Смекни!
smekni.com

Оптические разветвители и их устройства (стр. 1 из 2)

Оптические разветвители

Разветвители (ответвители) сигнала играют важную роль в, ВОЛС. Различают разветвители чувствительные (селективные) к длине волны и нечувствительные (неселективные). Первые применяются для объединения (или разъединения) сигналов с различными оптическими несущими и называются мультиплексорами (и демультиплексорами соответственно). Вторые используются для разветвления оптической мощности при наличии большого числа оконечных устройств в линии связи, подключения шины данных в ЭВМ, приема контрольного сигнала или сигнала обратной связи, предназначенного для управления мощности источника излучения.

Мультиплексоры и демультиплексоры

Мультиплексирование позволяет увеличить информационную емкость ВОЛС. Применяемые в линиях устройства для объединения сигналов с различными несущими длинами волн (мультиплексоры) и разъединения (демультиплексоры) должны иметь малые вносимые потери. Мультиплексоры должны, кроме того, обеспечивать высокую степень изоляции между каналами. В зависимости от длины волны используют четыре различных способа получения устройств связи . В основу работы устройств положены три чувствительных к длине волны эффекта — угловая дисперсия, интерференция и поглощение. Демультиплексоры, используют угловую дисперсию решетки или призмы. Конструкция для разделения каналов с помощью интерференционного фильтра, структура поглощающего типа, используемая как демультиплексор. Каждый поглотитель состоит из чувствительного к длине волны фотодиода. Устройства с решеткой и призмой являются делителями с параллельным разделением каналов, а использующие фильтры и селективные фотодетекторы с последовательным.

Последовательное разделение применяется при небольшом числе каналов, так как с ростом числа каналов пропорционально увеличивается число элементов схемы (светофильтров, делительных пластин, зеркал, фокусирующих элементов) и соответственно растут потери на излучение.

Рисунок 3.1.0 - Принцип работы устройств связи, селективных к длине волны: а - с решёткой; б - с призмой; в - с интерференционным фильтром; г - с поглощающим фильтром; 1 - градиентная цилиндрическая линза; 2 - дифракционная решётка; 3 - хроматическии фильтр; 4 - призма; 5 - отражающее покрытие; 6 - селективные фотодетекторы

Наиболее широко используются устройства с интерференционным фильтром. Демультиплексоры такого типа выполнимы и в полностью волоконном исполнении без использования цилиндрических линз. Их устройство подобно устройству торцевых делителей мощности, в разрезе передающего ВС которых вместо полупрозрачной пластины расположен фильтр, чувствительный к длине волны [7].

Параллельное разделение, возможно осуществить как для малого, так и для большого (несколько десятков) числа спектрально уплотненных несущих в одном волоконном световоде (ВС).Параллельные детали представляют собой миниспектрометры. Как и спектрометр, делитель имеет диспергирующий элемент (решетку или призму), коллимирующий элемент (объектив или вогнутое зеркало), а также входную и выходную щели (роль которых выполняют сердцевины излучающего и приемных ВС). Схемас призмой не получила широкого распространения, так как призма ограничивает возможность миниатюризации устройства и характеризуется низкой дисперсией в диапазоне длин волн 1,1 ... 1,6мкм. Материалы для изготовления призм со значительной угловой дисперсией имеют большие потери. Кроме того, дисперсияпризм не постоянна по спектру. Наибольшее распространение получили устройства с дифракционной решеткой.

На рисунке 3.1.1 представлены зависимости вносимых потерьLiи переходного затуханияLa для полупроводникового лазера с шириной спектральной линии =2 нм и светодиода с =40 нм. Из рисунков видно, что с ростом уменьшается переходное затухание. Его можно увеличить, уменьшая плотность упаковки ВС (увеличивая параметрDf2a, где а — радиус сердцевины ВС). Однако при этом растут вносимые потери. Мультиплексоры и демультиплексоры с решетками мало пригодны для использования в ВОЛС, в которых источниками излучения являются светодиоды.

Примером устройства демультиплексора с решеткой является пятиканальный демультиплексор, изображенный на рисунке 3.1.2. Излучающий и пять приемных ВС объединены в линейку, расположенную в фокальной плоскости объектива (фокусное расстояние 23,8 мм, диаметр 14 мм).

Рисунок 3.1.1 - Зависимость вносимых потерь Li (штриховые кривые) и переходного затухания L, (сплошные кривые) от спектрального разделения каналов для полупроводникового лазера с шириной спектральной линии =2 нм (а) и све-тодиода =40 нм (б).

Примечание. Цифры на кривых показывают отношение пространственного разделения D/2a, где D диаметр ВС, гa—диаметр сердцевины.

Излучение из передающего ВС коллимируется объективом, диафрагмирует на решетке и снова попадает в объектив, который в зависимости от длины волны фокусирует излучение на тот или другой приемный ВС. Вместо объектива может использоваться фокусирующий (градиентный) стержень или прозрачная среда с оптическим элементом на поверхности. Дифракционную решетку изготовляют анизотропным травлением кристаллической подложки по кристаллическим осям сквозь предварительно нанесенную маску. Решетка имеет несимметричные канавки. Параметры решетки (постоянная решетка =4 мкм, угол в = 6,2°) выбраны так, чтобы ее максимальная дифракционная эффективность достигалась на центральной длине волны =0,86 мкм рабочего диапазона 0,82...0,88 мкм. Спектральный интервал между каналами равен 25 нм. Во всем диапазоне дифракционная эффективность составляет величину, не превышающую 90%, вносимые потери в каналах не превышают 1,4 дБ, переходное затухание —30 дБ.

Большое внимание уделяется разработке малогабаритных делителей в интегрально-оптическом исполнении, а также различных делителей с вогнутыми решетками.

Делители оптической мощности

Неселективные разветвители подразделяют на два основных типа: Т-образные, построенные по принципу ответвления оконечных устройств от главного ствола линии, и звездообразные.

Рисунок 3.2.1 - Устройство пятиканального демультиплексора: 1—входной ВС; 2—выходные ВС; 3 объектив; 4—дифракционная решетка

Потери при распределении мощности излучения в системе с Т-образными соединителями возрастают пропорционально числу абонентов, а в системе со звездообразными ответвителями — пропорционально логарифму числа оконечных устройствN. Так, в системе с 20 оконечными устройствами общие потери составляют в первом случае 130 дБ, а во втором — 28 дБ. Поэтому в системах с большим числом абонентов целесообразно применение звездообразных соединительных устройств.

Деление мощности с помощью Т-образного разветвителя характеризуют следующими величинами затухания:

в прямом направленииa1= - 10lg (P1/P2), P4=0;

вносимым a2= - 10 lg (P2+P3), P4=0;

при ответвлении а3= - 10 Ig (P1/Р3);

связи a4= - 10 lg (P4/P2), P1=0;

в обратном направлении а5= - 10 lg (P4/P1).

В звездообразном ответвителе к каждому из входных ВС подведена мощность Pе, (i=l, 2, ...,п), которая передается выходным ВС. Пусть Pа,(j=1, 2, ..., т) — мощность, поступающая в j-и выходной ВС. При равномерном распределении входной мощности между выходными ВС ответвитель характеризуют следующие величины:

потери на расщеплениеan=10 lg m;

вносимые потериa.i,i= - 10 Ig Pe / (Pa1+Pa2+...+Pam);

ослабление в обратном направленииar,l= - 10 lg Pei=l / Pei, где l=1, 2, ...,п.

При конструировании оптического разветвителя желательно достичь малых вносимых потерь, малой модовой зависимости конструкции, хорошей воспроизводимости параметров, простоты конструкции, малых размеров и массы. Конструкция разветвителя зависит от типа ВС, приемного угла, отношения радиуса сердцевины к толщине оболочки, возбуждаемого медового распределения на вводе ВС.

По своей конструкции разветвители разделяют на две основные группы — биконические, в которых излучение передается через боковую поверхность, и торцевые, в которых излучение передается через торец. В обеих группах передача излучения может осуществляться либо при непосредственном контакте ВС, либо через вспомогательные элементы — зеркала, линзы, смесители. В биконических разветвителях свет может быть извлечен через боковую поверхность при преобразовании направляемой моды в моду излучения или при связи со вторым ВС через исчезающее поле (рисунок 3.2.1). Преобразование распространяющейся волны в моды излучения получают при изгибе ВС, при снятии оболочки или коническом сужении сердцевины. Биконические разветвители легко - изготовить, однако они обладают плохой воспроизводимостью параметров. Вносимые потери 0,2...1 дБ.

Из разветвителей торцевого типа наиболее распространены такие, в которых торцы выходных ВС непосредственно состыковываются с торцом входного ВС и ническим способом или заливаются каплей клея. Изменяя взаимное положение закрепляются каким-либо механическим способом или заливая каплей клея [3].

Рисунок 3.2.1 - Биконический разветвитель со связью через затухающее поле

Рисунок 3.2.2 - Разветвители торцевого типа: 1—входной ВС; 2,3,4 —выходные ВС

Изменяя взаимное положение торцов ВС и подбирая их поперечное сечение (рисунок 3.2.2), можно изменять в широких пределах отношение мощностей в разных выходных каналах. Вносимые потери составляют 0,3...1,2 дБ. Для их уменьшения, а также для снижения возбуждения мод оболочки стравливают или сошлифовывают. На рисунке 3.2.3 изображен разветвитель с ветвящейся структурой, сформированный путем склеивания или оплавления выходных ВС вдоль сошлифованных под малым углом сердцевины и соединения с торцом входного ВС. Хотя принцип разветвителя простой, изготовление затруднительно, вносимые потери составляют 0,5...1,2 дБ.Эта конструкция подходит .как для градиентных, так и для ступенчатых ВС. Разделение мод и потери растут с ростом угла , под которым соединены ВС.