2.1.3. Квантование
В большинстве вейвлет - применяется скалярное квантование. Существуют две основные стратегии выполнения скалярного квантования. Если заранее известно распределение коэффициентов в каждой полосе, оптимальным будет использование квантователей Ллойда - с ограниченной энтропией для каждой субполосы. В общем случае подобным знанием мы не обладаем, но можем передать параметрическое описание коэффициентов путем посылки декодеру дополнительных бит. Априорно известно, что коэффициенты высокочастотных полос имеют обобщенное гауссовское распределение с нулевым матожиданием.
На практике обычно применяется намного более простой равномерный квантователь с «мертвой» зоной. Интервалы квантования имеют размер ^, кроме центрального интервала (возле нуля), чей размер обычно выбирается 2^ . Коэффициенту, попавшему в некоторый интервал, ставится в соответствие значение центроида этого интервала. В случае асимптотически высоких скоростей кодирования равномерное квантование является оптимальным. Хотя в практических режимах работы квантователи с «мертвой» зоной субоптимальны, они работают почти так же хорошо, как квантователи Ллой-да-Макса будучи намного проще в исполнении. Кроме того, они робастны к изменениям распределения коэффициентов в субполосе. Дополнительным их преимуществом является то, что они могут быть вложены друг в друга для получения вложенного битового потока.
2.1.4. Энтропийное кодирование
Субоптимальное энтропийное кодирование коэффициентов можно осуществить при помощи алгоритма арифметического кодирования. Кодеру требуется оценить распределение квантованных коэффициентов. Эта оценка получается путем аппроксимации распределения коэффициентов гауссовской или лапласовской плотностью и вычисления параметров распределения. Оценка параметров может также производиться и в процессе работы, «на ходу». Такой подход имеет то преимущество, что кодер учитывает локальные изменения статистики изображения. Известны эффективные адаптивные процедуры оценивания.
Так как изображение не является случайным гауссовским процессом, коэффициенты преобразования, хотя и некоррелированные, обладают определенной структурой. Энтропийный кодер может использовать эту структуру, осуществляя некоторое предсказание. В ряде работ отмечено, что применение предсказания приводит к незначительному повышению эффективности.
На практике зачастую вместо арифметического кодера используют кодер Хаффмана. Причина этого заключается в меньшем требующемся объеме вычислений, а также в том, что алгоритмы арифметического кодирования запатентованы. Так, только фирма IBM обладает более чем 90 патентами различных вариаций этого кодера. В силу этого в видеокодеках ADV6xx применен кодер Хаффмана.
2.1.5. Меры искажения, взвешенные с учетом восприятия человеком
СКО (среднеквадратическая ошибка) не всегда хорошо согласуется с визуально наблюдаемой ошибкой. Рассмотрим, например, два изображения, которые полностью одинаковы, кроме небольшой области. Хотя визуально разность между этими изображениями хорошо заметна, СКО будет примерно одинаковой. Учет системы человеческого зрения в схеме сжатия является трудной задачей. Было проведено множество исследований, но в силу трудностей с математическим описанием системы зрения человека подходящей меры найдено не было. Известно, что в человеческом глазу выполняется операция многомасштабного представления изображений. Глаз более чувствителен к искажениям в низкочастотной области. Отсюда существует возможность улучшения визуального качества реконструированного изображения путем взвешивания СКО субполос в соответствии с чувствительностью глаза в различных частотных диапазонах. Веса для наиболее часто используемого фильтра 7/9 были вычислены А.Ватсоном.
2.2. Новые идеи в области сжатия изображений, связанные с вейвлет – преобразованием
Базовый вейвлет – кодер использует общие принципы кодера с преобразованием, то есть основан на эффектах декорреляции и перераспределения энергии. Математическая теория вейвлет – приобразования позволяет создавать совершенно новые и эффективные методы сжатия.
Кодирование с преобразованием основано на том, что большая часть энергии сосредоточивается в малом количестве коэффициентов, которые квантуются в соответствии с их значением. Эта парадигма, являясь достаточно мощной, основывается на нескольких предположениях, которые не всегда верны. В частности, предполагается, что изображение порождается гауссовским источником, что не соответствует действительности. С.Маллат и Ф.Фальзон показали, как это несоответствие приводит к неверным результатам при кодировании с низкими скоростями.
Традиционное кодирование с преобразованием может быть улучшено путем введения операторов выбора. Вместо квантования коэффициентов трансформанты в заранее определенном порядке вейвлет позволяет выбирать нужные для кодирования элементы. Это становится возможным главным образом благодаря тому, что базис вейвлетов компактен в частотной и пространственной областях.
Вообще говоря, развитие идей кодирования с преобразованием заключается в снятии ограничения на линейную аппроксимацию изображения, так как оператор выбора является нелинейным. В работах Р.Девора, С.Маллата и Ф.Фальзона показано, что проблема кодирования изображения может быть эффективно решена в рамках теории нелинейной аппроксимации. Отсюда возникает и ряд различий в алгоритмах работы традиционных и вейвлет - кодеров. В случае линейной аппроксимации изображение представляется фиксированным числом базисных векторов Карунена - Лоэва. Далее, какое-то число малых коэффициентов трансформанты приравнивается к нулю. Идея нелинейной аппроксимации заключается в аппроксимации изображения путем адаптивного выбора самих базисных функций. Информация о выбранных базисных функциях хранится в бинарной карте значений и передается декодеру, как дополнительная информация.
Для получения большей компактности энергии необходимо адаптировать преобразование к какому - конкретному, а не к целому классу изображений. В случае если источник описывается смесью различных распределений, преобразование Карунена - не является больше эффективным.
Решетчатое квантование коэффициентов гораздо ближе по своей сути к векторному квантованию, чем к кодированию с преобразованием.
Развитие идей кодирования с преобразованием заключается в основном во введении некоторого оператора выбора. Информация о выборе должна быть передана декодеру, как дополнительная информация. Она может быть в виде нульдеревьев или в виде обобщенных классов энергии. Метод «обратного оценивания распределения», предложенный К.Рамчандраном, основан на другом подходе. Считается, что дополнительная информация является избыточной и может быть получена декодером непосредственно из данных. Использование данного метода приводит к хорошим показателям кодирования.
Визуальное сравнение восстановленных изображений показывает, что лучшие результаты дают методы, использующие нульдеревья для кодирования коэффициентов. В частности, в этих изображениях лучше выражены контуры и отсутствует размытость мелких деталей.
2.3. Кодирование посредством нульдерева
Из теории кодирования с погрешностью известно, что оптимальное распределение бит достигается в случае, если сигнал поделен на субполосы, содержащие «белый» шум. Для реальных сигналов это достигается в случае неравномерной ширины субполос: в области НЧ они более узки, чем в области ВЧ. Вот почему вейвлет –преобразование обеспечивает компактность энергии.
Эта компактность энергии ведет к эффективному применению скалярных квантователей. Однако они не учитывают остаточную структуру, сохраняющуюся в вейвлет -коэффициентах в особенности ВЧ субполос. Современные алгоритмы сжатия все тем или иным образом используют эту структуру для повышения эффективности сжатия. Одним из наиболее естественных способов является учет взаимосвязей между коэффициентами из различных субполос. В высокочастотных субполосах имеются обычно большие области с нулевой или малой энергией. Области с высокой энергией повторяют от субполосы к субполосе свои очертания и местоположение. И это неудивительно – ведь они появляются вокруг контуров в исходном изображении – там, где вейвлет – преобразование не может адекватно представить сигнал, что приводит к «утечке» части энергии в ВЧ субполосы. Медленно изменяющиеся, гладкие области исходного изображения хорошо описывают НЧ вейвлет – преобразования, что приводит к «упаковке» энергии в малом числе коэффициентов НЧ области. Этот процесс примерно повторяется на всех уровнях декомпозиции, что и приводит к визуальной «похожести» различных субполос. Итак, знание о том, что изображение состоит из гладких областей, текстур и контуров, помогает учитывать эту межполосную структуру. Кодеры, использующие структуру нульдерева, сочетают учет структуры коэффициентов с совместным кодированием нулей, в результате чего получается очень эффективный алгоритм сжатия.
2.3.1. Алгоритм Льюиса и Ноулеса
Впервые идея нульдерева была предложена А.Льюисом и Г.Ноулесом. В их алгоритме применялась древовидная структура данных для описания вейвлет. Такая структура получается в результате применения двухканального разделимого вейвлет - преобразования. Корневой узел дерева представляет коэффициент масштабирующей функции в самой НЧ области и имеет три отпрыска. Узлы дерева соответствуют вейвлет - масштаба, равного их высоте в дереве. Каждый из узлов имеет четыре отпрыска, соответствующих вейвлет – коэффициентам следующего уровня и того же пространственного расположения. Низом дерева являются листьевые узлы, не имеющие отпрысков.