Смекни!
smekni.com

Теория автоматического управления (стр. 1 из 2)

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО

СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РФ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Расчетно-графическая работа №1

По курсу Теория автоматического управления

Студент: Стариков Д.А.

Группа: АС-513

Преподаватель: кандидат технических наук, доцент

Кошкин Юрий Николаевич

К защите: 1 декабря 1997г

Оценка:_________________________

Подпись преподавателя: __________

Новосибирск, 1997 г.

Вариант 25V


Вид воздействия: V(p)


Виды передаточных функций:

Параметры схемы:



Показатели качества управления:


1. Найти передаточные функции системы в разомкнутом и замкнутом состоянии по управляющему V(p) и возмущающему F(p) воздействиям, характеристическое уравнение и матрицы А,В и С.


Для записи характеристического уравнения приравняем знаменатель передаточной функции замкнутой системы к нулю.


Переходим к записи дифференциального уравнения, описывающему поведение исследуемой системы в динамике


Используя переменные состояния в виде:


можно перейти к дифференциальным уравнениям состояния в форме Коши:


Из этого определяем матрицы А,В,С :



2. Определение устойчивости исследуемой системы двумя критериями.

2.1 Частотный критерий Найквиста в логарифмическом масштабе.

Запишем передаточную функцию разомкнутой системы:


Данная система состоит из 3 типовых звеньев:



Расчетная таблица для ЛАХ и ЛФХ:


Из графиков ЛАХ и ЛФК видно, что точка пересечения ЛАХ с осью абсцисс лежит правее точки, где фазовый сдвиг достигает значения равного –180.

Значит система неустойчива.

2.2 Критерий Гурвица

Приравниваем знаменатель передаточной функции замкнутой системы к нулю и записываем характеристическое уравнение:

Составляем определитель Гурвица:


Для того, чтобы линейная динамическая система была устойчива, необходимо и достаточно, чтобы все диагональные миноры определителя Гурвица и сам определитель имели знаки, одинаковые со знаком первого коэффициента характеристического уравнения, т.е. были положительными:


3. Определяем значение критического коэффициента усиления разомкнутой системы, при котором САУ будет находиться на границе устойчивости, с помощью критерия Гурвица

Выпишем знаменатель ПФ в замкнутом состоянии и приравняем его к нулю, получим характеристическое уравнение:


Для определения критического коэффициента приравняем к нулю (n - 1) диагональный минор в определители Гурвица для данного характеристического уравнения и получим выражение:

4. Исследовать влияние одного из параметров системы на устойчивость системы (метод Д-разбиения).

Исследуем влияние параметра T1 на устойчивость системы методом Д-разбиения.

Для получения кривой Д-разбиения решим характеристическое уравнение (знаменатель ПФ в замкнутом состоянии) относительно T1.


Задаваясь частотой –¥ £ w £ +¥ строим кривую Д-разбиения и штрихуем левую сторону кривой при движении по ней с увеличением частоты от –¥ до +¥.

1. В 1 области К правых корней

2. Из 1 во 3 (К+1) правых корней

3. Из 3 во 2 (К+2) правых корней

4. Из 2 в 3 (К+1) правых корней

5. Из 3 в 1 К правых корней

6. Из 1 в 4 (К-1) правых корней

Далее проводим анализ полученных полуплоскостей с точки зрения выделения полуплоскости, претендующей на устойчивость, т.е. такой, которая будет содержать наименьшее число правых корней.

Таким образом, полуплоскость 4 - полуплоскость претендент на устойчивость. Проверим по критерию Гурвица устойчивость для того значения параметра, который находиться внутри полуплоскости - претендента, т.е. в отрезке лежащем на вещественной оси от 19 до +¥.

Расчетная таблица:

w

P(w)

Q(w)

0

67.4

¥

13.76

0

-0.381

-13.76

0

-0.381

28-3.2*10-19i

0.025

0

-28+3.2*10-19i

0.025

0

-8.7*10-19-40i

-0.031

-0.00176i

8.7*10-19+40i

-0.031

0.00176i

3.2+2.8*10-18i

19

0

-3.2-2.8*10-18i

19

0

¥

0

0


Возьмем T1=25

Тогда, характеристическое уравнение будет:


Составляем определитель Гурвица:

Все определители больше нуля значит, система устойчива при 19£T1£¥.


5.Синтез корректирующего устройства, обеспечивающее требуемые показатели качества в установившемся и переходном режимах.

Синтезируем корректирующее устройство для заданной системы, т.к. согласно п.2 она неустойчива. По заданным показателям качества строим желаемую ЛАХ разомкнутой системы.