Примечания:
Линии 11, 18, 25 обычно считают незаземленными. Приведенная в таблице спецификация относится к спецификациям Bell 113B и 208A.
Линии 9 и 10 используются для контроля отрицательного (MARK) и положительного (SPACE) уровней напряжения.
Во избежание путаницы между RD (Read - считывать) и RD (Received Data - принимаемые данные) будут использоваться обозначения RXD и TXD, а не RD и TD.
Стандартный последовательный порт RS-232C имеет форму 25-контактного разъема типа D (рис 1).
Рис. 1. Назначение линий 25-контактного разъема типа D для интерфейса RS-232C
Терминальное оборудование обычно оснащено разъемом со штырьками, а связное - разъемом с отверстиями (но могут быть и исключения).
Сигналы интерфейса RS-232C подразделяются на следующие классы.
Последовательные данные
(например, TXD, RXD). Интерфейс RS-232C обеспечивает два независимых последовательных канала данных: первичный (главный) и вторичный (вспомогательный). Оба канала могут работать в дуплексном режиме, т.е. одновременно осуществляют передачу и прием информации.
Управляющие сигналы квитирования
(например, RTS, CTS). Сигналы квитирования - средство, с помощью которого обмен сигналами позволяет DTE начать диалог с DCE до фактической передачи или приема данных по последовательной линии связи.
Сигналы синхронизации
(например, TC, RC). В синхронном режиме (в отличие от более распространенного асинхронного) между устройствами необходимо передавать сигналы синхронизации, которые упрощают синхронизм принимаемого сигнала в целях его декодирования.
На практике вспомогательный канал RS-232C применяется редко, и в асинхронном режиме вместо 25 линий используются 9 линий (таблица 2).
Таблица 2. Основные линии интерфейса RS-232C.
Номер контакта | Сигнал | Выполняемая функция |
1 | FG | Подключение земли к стойке или шасси оборудования |
2 | TXD | Последовательные данные, передаваемые от DTE к DCE |
3 | RXD | Последовательные данные, принимаемые DTE от DCE |
4 | RTS | Требование DTE послать данные к DCE |
5 | CTS | Готовность DCE принимать данные от DTE |
6 | DSR | Сообщение DCE о том, что связь установлена |
7 | SG | Возвратный тракт общего сигнала (земли) |
8 | DCD | DTE работает и DCE может подключится к каналу связи |
Виды сигналов
В большинстве схем, содержащих интерфейс RS-232C, данные передаются асинхронно, т.е. в виде последовательности пакета данных. Каждый пакет содержит один символ кода ASCII, причем информация в пакете достаточна для его декодирования без отдельного сигнала синхронизации.
Символы кода ASCII представляются семью битами, например буква А имеет код 1000001. Чтобы передать букву А по интерфейсу RS-232C, необходимо ввести дополнительные биты, обозначающие начало и конец пакета. Кроме того, желательно добавить лишний бит для простого контроля ошибок по паритету (четности).
Наиболее широко распространен формат, включающий в себя один стартовый бит, один бит паритета и два стоповых бита. Начало пакета данных всегда отмечает низкий уровень стартового бита. После него следует 7 бит данных символа кода ASCII. Бит четности содержит 1 или 0 так, чтобы общее число единиц в 8-битной группе было нечетным. Последним передаются два стоповых бита, представленных высоким уровнем напряжения. Эквивалентный ТТЛ-сигнал при передаче буквы А показан на рис. 2.
Рис. 2. Представление кода буквы А сигнальными уровнями ТТЛ.
Таким образом, полное асинхронно передаваемое слово состоит из 11 бит (фактически данные содержат только 7 бит) и записывается в виде 01000001011.
Используемые в интерфейсе RS-232C уровни сигналов отличаются от уровней сигналов, действующих в компьютере. Логический 0 (SPACE) представляется положительным напряжением в диапазоне от +3 до +25 В, логическая 1 (MARK) - отрицательным напряжением в диапазоне от -3 до -25 В. На рис. 3 показан сигнал в том виде, в каком он существует на линиях TXD и RXD интерфейса RS-232C.
Рис. 3. Вид кода буквы А на сигнальных линиях TXD и RXD.
Сдвиг уровня, т.е. преобразование ТТЛ-уровней в уровни интерфейса RS-232C и наоборот производится специальными микросхемами драйвера линии и приемника линии.
На рис. 4 представлен типичный микрокомпьютерный интерфейс RS-232C. Программируемая микросхема DD1 последовательного ввода осуществляет параллельно-последовательные и последовательно-параллельные преобразования данных. Микросхемы DD2 и DD3 производят сдвиг уровней для трех выходных сигналов TXD, RTS, DTR, а микросхема DD4 - для трех входных сигналов RXD, CTS, DSR. Микросхемы DD2 и DD3 требуют напряжения питания ±12 В.
Рис. 4. Типичная схема интерфейса RS-232C.
Усовершенствования
Разработано несколько новых стандартов, направленных на устранение недостатков первоначальных спецификаций интерфейса RS-232C. Среди них можно отметить интерфейс RS-422 (балансная система, допускающая импеданс линии до 50 Ом), RS-423 (небалансная система с минимальным импедансом линии 450 Ом) и RS-449 (стандарт с высокой скоростью передачи данных, в котором несколько изменены функции схем и применяется 37-контактный разъем типа D).
Тестовое оборудование для интерфейса RS-232C
Соединители.
Эти дешевые устройства упрощают перекрестные соединения сигнальных линий интерфейса RS-232C. Они обычно оснащаются двумя разъемами типа D (или ленточными кабелями, имеющими розетку и вставку), и все линии проводятся к той области, куда можно вставить перемычки. Такие устройства включаются последовательно с линиями интерфейса RS-232C, и затем проверяются различные комбинации подключений.
Трансформаторы разъема.
Обычно эти приспособления имеют разъем RS-232C со штырьками на одной стороне и разъем с отверстиями на другой стороне.
Пустые модемы.
Как и предыдущие устройства, пустые модемы включаются последовательно в тракт данных интерфейса RS-232C. Их функции заключаются в изменении сигнальных линий таким образом, чтобы превратить DTE в DCE.
Линейные мониторы.
Мониторы индицируют логические состояния (в терминах MARK и SPACE) наиболее распространенных сигнальных линий данных и квитирования. С их помощью пользователь получает информацию о том, какие сигналы в системе присутствуют и активны.
Врезки.
Эти устройства обеспечивают доступ к сигнальным линиям. В них, как правило, совмещены возможности соединителей и линейных мониторов и, кроме того, предусмотрены переключатели или перемычки для соединения линий с обоих сторон устройства.
Интерфейсные тестеры.
По своей конструкции эти устройства несколько сложнее предыдущих простых устройств. Они позволяют переводить линии в состояния MARK или SPACE, обнаруживать помехи, измерять скорость передачи данных и индицировать структуру слова данных.