Смекни!
smekni.com

Цитоскелет сигнализирует (стр. 2 из 4)

Загадка ионов кальция

Рассмотрим сначала, что происходит со вторым чрезвычайно распространенным вторичным мессенджером – кальцием, вернее его ионами. Впервые их ключевая роль в ряде биологических реакций была показана еще в 1883 г. когда Сидней Рингер заметил, что изолированные мышцы лягушки не сокращаются в дистиллированной воде. Чтобы в ответ на электрическую стимуляцию мышца сократилась, ей необходимо присутствие в окружающей ее среде ионов кальция.

Рис. 5. Схема строения скелетной мышцы (саркомера)

Рис. 6. Система мембран, передающая сигнал от плазмалеммы мышечной клетки ко всем миофибриллам

Теперь последовательность основных событий, происходящих при сокращении скелетной мускулатуры, хорошо известна (рис. 5). В ответ на электрический импульс, который доходит до мышцы по аксону нервной клетки, внутри мышечной клетки – миофибриллы – открываются резервуары ионов кальция – мембранные цистерны, в которых концентрация ионов кальция может быть выше, чем в цитоплазме, в тысячу и более раз (рис. 6). Высвободившийся кальций соединяется с белком тропонином С, который связан с выстилающими внутреннюю поверхность клетки актиновыми филаментами. Тропонин (рис. 7) играет роль блокатора, препятствующего скольжению миозиновых нитей по актиновым филаментам. В результате присоединения кальция к тропонину блок отсоединяется от нити, миозин скользит по актину, и мышца сокращается (рис. 8). Как только акт сокращения заканчивается, специальные белки – кальциевые АТФазы – закачивают ионы кальция обратно во внутриклеточные резервуары.

Рис. 7. Схема расположения на актиновом филаменте тропонина и тропомиозина

Рис. 8. Актиновый филамент в поперечном разрезе

На концентрацию внутриклеточного кальция оказывают влияние не только нервные импульсы, но и другие сигналы. Например, это может быть уже знакомый нам цАМФ. В ответ на появление адреналина в крови и соответствующее повышение концентрации цАМФ в клетках сердечной мышцы в них высвобождаются ионы кальция, что приводит к учащению сердцебиения.

Вещества, оказывающие влияние на кальций, могут содержаться также непосредственно в клеточной мембране. Как известно, мембрана состоит из фосфолипидов, среди которых один – фосфоинозитол-4, 5-дифосфат – играет особую роль. Помимо инозита молекула фосфоинозитол-4, 5-дифосфата содержит две длинные углеводородные цепи, состоящие из 20 и 17 атомов углерода (рис. 9). Под воздействием определенных внеклеточных сигналов и под контролем уже знакомых читателям G-белков они отсоединяются, в результате чего образуются две молекулы – диацилглицерин и инозитолтрифосфат. Последний участвует в высвобождении внутриклеточного кальция (рис. 10). Такого рода сигнализация используется, например, в оплодотворенной икре шпорцевой лягушки.

Проникновение первого же из множества спермиев в готовую для оплодотворения икринку вызывает образование в ее мембране инозитолтрифосфата. В результате ионы кальция высвобождаются из внутренних резервуаров и оболочка оплодотворенной яйцеклетки мгновенно разбухает, отсекая путь внутрь яйцеклетки менее удачливым или менее расторопным сперматозоидам.

Рис. 11. Структура молекулы кальмодулина

Как же такое простое вещество, как ион кальция, может регулировать активность белков? Выяснилось, что он связывается внутри клетки со специальным белком кальмодулином (рис. 11). Этот достаточно крупный белок, состоящий из 148 аминокислотных остатков, как и цАМФ, обнаружен практически во всех изученных клетках.

Рис. 12. Механизм активации Ca2+-зависимого ферментау

Присоединяющийся к кальмодулину кальций активирует его аналогично тому, как цАМФ стимулирует работу протеинкиназ. Именно так, например, происходит инициация сокращения гладкой мускулатуры. Высвободившиеся в ответ на внешний сигнал ионы кальция связываются с кальмодулином, который после этого взаимодействует с ферментом киназой и активирует ее (рис. 12). Комплекс киназа–кальмодулин связывается с актином, приводя его в рабочее состояние. В результате гладкие мышцы сокращаются. Опосредованный кальцием путь сигнала к поперечно-полосатой скелетной мускулатуре более длителен, зато гладкие мышцы в отличие от поперечно-полосатых могут значительно дольше находиться в сокращенном состоянии. Именно поэтому мускулы-замыкатели двустворчатых раковин могут часами сжимать свои створки.

В клетках разных тканей активированный кальцием кальмодулин связывается с различными белками-мишенями, влияя на их работу. Такое поведение кальмодулина вызывает вопрос, который возникал и при обсуждении влияния цАМФ и активируемой им протеинкиназы на активность белков, а именно: почему в разных клетках одни и те же активированные кальцием молекулы кальмодулина присоединяются к различным белкам?

Загадка стероидных гормонов

Совершенно аналогичная проблема возникает и при изучении гидрофобных стероидных гормонов, структура которых похожа на структуру жирорастворимого вещества холестерина. Термин «гидрофобный» указывает на их плохую растворимость в воде (от гр. hydor – вода и phobos – страх). Такие гормоны, будучи жирорастворимыми, легко проходят через состоящие из фосфолипидов клеточные мембраны. Оказавшись внутри клетки, стероидные гормоны связываются с соответствующими рецепторами. Рецепторы изменяют свою пространственную форму (конформацию) и, проникая в ядро через его ядерную мембрану, соединяются с определенными последовательностями нуклеотидов в ДНК, тем самым «включая» или «выключая» транскрипцию определенных генов. Такая последовательность событий доказана для стероидного гормона кортизона – его комплекс с рецептором связывается с соответствующим единственным геном, который удалось выделить и клонировать. Какая цепь превращений вызывается действием других гормонов и как происходит их специфическая «посадка» на определенный участок ДНК, во многом пока не ясно.

Не ясно и другое. Показано, что один и тот же гормон, связываясь со своим специфическим рецептором, вызывает различные ответы в разных клетках.

Забытое пространство

Число разнообразных сигналов, которые клетка может получать извне, очень велико. Это слабые электрические импульсы, гормоны, медиаторы, различные ростовые факторы и другие воздействия. Количество же вторичных мессенджеров, с помощью которых все это множество внешних сигналов влияет на внутриклеточные процессы, удивительно мало. Это цАМФ, ионы кальция, специальные молекулы типа высокофосфорилированных нуклеотидов (РРАРР – фосфат-фосфат-аденин-фосфат-фосфат) или инозитолтрифосфат.

Как же с помощью этих вторичных посредников клетка умудряется понять, какие именно сигналы их вызвали и каким образом необходимо на них реагировать? На этот вопрос трудно ответить прежде всего потому, что все клеточные компоненты (молекулы и ансамбли молекул) строго определенным образом скомпонованы в пространстве клетки.

Изучая по отдельности детали сложного часового механизма, который устроен несравнимо проще клетки, нелегко понять, как все эти шестеренки, маховички и пружины влияют друг на друга в работающем хронометре. Между тем именно такую задачу приходится решать исследователям клетки. Чтобы понять существо отдельных явлений или процессов, нужно разрушить клетку, выделить из нее белки, изучить их свойства и только потом попытаться установить их роль в том или ином процессе. При этом допускаются упрощения. Так, обычно принимается, что водорастворимые белки свободно диффундируют в цитоплазме наподобие крупинок в супе и никак не связаны между собой. Между тем само устройство некоторых клеточных органелл предполагает, что комплексы взаимодействующих ферментов должны образовывать специально сконструированные архитектурные ансамбли. Например, множество белков, катализирующих окислительные реакции в дыхательной цепи, располагаются на внутренних мембранах митохондрий в строго определенном порядке. Именно такая пространственная организация позволяет им с успехом осуществлять передачу богатых энергией электронов.

Но клетка содержит множество белков, связи которых друг с другом более лабильны и изменчивы во времени. По-видимому, для регуляции их пространственного взаимодействия требуется не прочное «заякоривание», а более тонкий и гибкий механизм. В частности, обеспечивать такую пространственную организацию могут белки цитоскелета. Они образуют настолько ажурные и динамичные структуры, что их изучение стало возможным лишь относительно недавно.

Строительные леса цитоскелета

Первые свидетельства сложности внутренней архитектуры цитоплазмы были получены еще в XIX в., когда в результате серебрения срезов тканей в клетках стали различать явственно проступающие сетеподобные структуры. Однако к изучению их состава и устройства удалось приступить лишь в 60-е гг. XX в., когда в биологии стали широко применяться такие тонкие методы исследований, как электронная микроскопия, ультрацентрифугирование и электрофорез.

В цитоплазме были обнаружены сложные структуры, образующие цитосклет. Выяснилось, что тяжи цитоскелета построены в основном из тонких (диаметром 7 нм) актиновых филаментов и длинных, толстых (диаметром 25 нм) и жестких микротрубочек, состоящих из - и -тубулина. Эти белки оказались очень лабильными, способными формировать легко изменяющиеся динамичные пространственные структуры. В частности, глобулярные белки актина не только легко и быстро полимеризуются в длинные вытянутые нити – филаменты (рис. 13). Они взаимодействуют с целым набором других вспомогательных белков, в результате чего возникает определенным образом организованная пространственная сеть филаментов.