Смекни!
smekni.com

Нейрокомпьютерные системы (стр. 3 из 32)

ВЫВОДЫ

Искусственные нейронные сети являются важным расши­рением понятия вычисления. Они обещают создание автома­тов, выполняющих функции, бывшие ранее исключительной прерогативой человека. Машины могут выполнять скучные, монотонные и опасные задания, и с развитием технологии возникнут совершенно новые приложения. Теория искусственных нейронных сетей развивается стремительно, но в настоящее время она недостаточна, чтобы быть опорой для наиболее оптимистических проек­тов. В ретроспективе видно, что теория развивалась быстрее, чем предсказывали пессимисты, но медленнее, чем надеялись оптимисты, - типичная ситуация. Сегодняш­ний взрыв интереса привлек к нейронным сетям тысячи исследователей. Резонно ожидать быстрого роста нашего понимания искусственных нейронных сетей, ведущего к более совершенным сетевым парадигмам и множеству прик­ладных возможностей.

Глава I Основы искусственных нейронных сетей

Искусственные нейронные сети чрезвычайно разнооб­разны по своим конфигурациям. Несмотря на такое разно­образие, сетевые парадигмы имеют много общего. В этой главе подобные вопросы затрагиваются для того, чтобы читатель был знаком с ними к тому моменту, когда позд­нее они снова встретятся в книге. Используемые здесь обозначения и графические пред­ставления были выбраны как наиболее широко используемые в настоящее время (опубликованных стандартов не имеет­ся), они сохраняются на протяжении всей книги.

БИОЛОГИЧЕСКИЙ ПРОТОТИП

Развитие искусственных нейронных сетей вдохновля­ется биологией. То есть, рассматривая сетевые конфигура­ции и алгоритмы, исследователи мыслят их в терминах организации мозговой деятельности. Но на этом аналогия может и закончиться. Наши знания о работе мозга столь ограничены, что мало бы нашлось руководящих ориентиров для тех, кто стал бы ему подражать. Поэтому разработчи­кам сетей приходится выходить за пределы современных биологических знаний в поисках структур, способных выполнять полезные функции. Во многих случаях это при­водит к необходимости отказа от биологического правдо­подобия, мозг становится просто метафорой, и создаются сети, невозможные в живой материи или требующие неправ­доподобно больших допущений об анатомии и функциониро­вании мозга. Несмотря на то, что связь с биологией слаба и зача­стую несущественна, искусственные нейронные сети про­должают сравниваться с мозгом. Их функционирование часто напоминает человеческое познание, поэтому трудно избежать этой аналогии. К сожалению, такие сравнения неплодотворны и создают неоправданные ожидания, неизбе­жно ведущие к разочарованию. Исследовательский энтузи­азм, основанный на ложных надеждах, может испариться, столкнувшись с суровой действительностью, как это уже однажды было в шестидесятые годы, и многообещающая область снова придет в упадок, если не будет соблюдать­ся необходимая сдержанность. Несмотря на сделанные предупреждения, полезно все же знать кое-что о нервной системе млекопитающих, так как она успешно решает задачи, к выполнению которых лишь стремятся искусственные системы. Последующее обсу­ждение весьма кратко. Нервная система человека, построенная из элемен­тов, называемых нейронами, имеет ошеломляющую слож­ность. Около 10 нейронов участвуют в примерно 10 передающих связях, имеющих длину метр и более. Каждый нейрон обладает многими качествами, общими с другими элементами тела, но его уникальной способностью являет­ся прием, обработка и передача электрохимических сигна­лов по нервным путям, которые образуют коммуникационную систему мозга.

Рис. 1.1. Биологический нейрон.

На рис. 1.1 показана структура пары типичных био­логических нейронов. Дендриты идут от тела нервной клетки к другим нейронам, где они принимают сигналы в точках соединения, называемых синапсами. Принятые сина­псом входные сигналы подводятся к телу нейрона. Здесь они суммируются, причем одни входы стремятся возбудить нейрон, другие - воспрепятствовать его возбуждению. Когда суммарное возбуждение в теле нейрона превышает некоторый порог, нейрон возбуждается, посылая по аксону сигнал другим нейронам. У этой основной функциональной схемы много усложнений и исключений, тем не менее, боль­шинство искусственных нейронных сетей моделируют лишь эти простые свойства.

ИСКУССТВЕННЫЙ НЕЙРОН

Искусственный нейрон имитирует в первом приближе­нии свойства биологического нейрона. На вход искусст­венного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, анало­гичный синаптической силе, и все произведения суммиру­ются, определяя уровень активации нейрона. На рис. 1.2 представлена модель, реализующая эту идею. Хотя сетевые парадигмы весьма разнообразны, в основе почти всех их лежит эта конфигурация. Здесь множество входных сигна­лов, обозначенных х1, х2 , ... , хn , поступает на искус­ственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором X, соответствуют сигналам, прихо­дящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес w1, v2, ..., иn , и поступает на суммирующий блок, обозначенный S. Каждый вес соответствует «силе» одной биологической синапти­ческой связи. (Множество весов в совокупности обознача­ется вектором W.) Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который мы будем называть NET. В векторных обозначениях это может быть компактно записано следующим образом:

Активационные функции

Сигнал NET далее, как правило, преобразуется активационной функцией F и дает выходной нейронный сигнал OUT. Активационная функция может быть обычной линейной функцией

OUT = K(NET).

где К - постоянная, пороговой функцией

OUT = 1, если NET > Т, OUT = 0 в остальных случаях,

где Т - некоторая постоянная пороговая величина, или же функцией, более точно моделирующей нелинейную передато­чную характеристику биологического нейрона и представ­ляющей нейронной сети большие возможности.

На рис. 1.3 блок, обозначенный F, принимает сигнал NET и выдает сигнал OUT. Если блок F сужает диапазон изменения величины NET так, что при любых значениях NET значения OUT принадлежат некоторому конечному интерва­лу, то F называется сжимающей функцией. В качестве «сжимающей» функции часто используется логистическая или «сигмоидальная» (S-образная) функция, показанная на рис. 1.4а. Эта функция математически выражается как F(x) = 1/(1 + е-x). Таким образом,

OUT = 1/(1 + е -NET).

По аналогии с электронными системами активационную функцию можно считать нелинейной усилительной характеристикой искусственного нейрона. Коэффициент усиления вычисляется как отношение приращения величины OUT к вызвавшему его небольшому приращению величины NET. Он выражается наклоном кривой при определенном уровне возбуждения и изменяется от малых значений при больших отрицательных возбуждениях (кривая почти горизонтальна) до максимального значения при нулевом возбуждении и снова уменьшается, когда возбуждение становится большим положительным. Гроссберг (1973) обнаружил, что подобная нелинейная характеристика решает поставленную им дилем­му шумового насыщения. Каким образом одна и та же сеть может обрабатывать как слабые, так и сильные сигналы? Слабые сигналы нуждаются в большом сетевом усилении, чтобы дать пригодный к использованию выходной сигнал' Однако усилительные каскады с большими коэффициентами усиления могут привести к насыщению выхода шумами уси­лителей (случайными флуктуациями), которые присутствуют в любой физически реализованной сети. Сильные входные сигналы в свою очередь также будут приводить к насыще­нию усилительных каскадов, исключая возможность полез­ного использования выхода. Центральная область логисти­ческой функции, имеющая большой коэффициент усиления, решает проблему обработки слабых сигналов, в то время как области с падающим усилением на положительном и отрицательном концах подходят для больших возбуждений. Таким образом, нейрон функционирует с большим усилением в широком диапазоне уровня входного сигнала.