Смекни!
smekni.com

Обмен веществ у животных (стр. 1 из 2)

Обмен веществ - одно из основных свойств живых организмов. Поступление питательных веществ и кислорода, превращение их в организме и выделение конечных продуктов во внешнюю среду определяется как обмен веществ, или метаболизм, который состоит из двух процессов - катаболизма (диссимиляции) и анаболизма (ассимиляции).

Под катаболизмом понимают процессы распада питательных веществ, которые сопровождаются освобождением энергии, заключенной в химических связях этих соединений. Процесс диссимиляции можно разделить на три последовательных этапа.

Первый этап подготовительный. На этом этапе крупные молекулы углеводов, жиров, белков, нуклеиновых кислот распадаются на мелкие молекулы: из крахмала образуется глюкоза, из жиров - жирные кислоты и глицерин, из белков - аминокислоты, из нуклеиновых кислот - нуклеотиды. Распад веществ на этом этапе сопровождается незначительным энергетическим эффектом. Вся освободившаяся энергия рассеивается в виде тепла.

Второй этап диссимиляции называется бескислородным или неполным. Вещества, образовавшиеся в подготовительном этапе, вступают на путь дальнейшего распада. Это сложный, многоступенчатый процесс. Он состоит из ряда следующих одна за другой ферментативных реакций. Ферменты, обслуживающие этот процесс, располагаются на внутриклеточных мембранах правильными рядами. Вещество, попав на первый фермент этого ряда, передвигается, как на конвейере, на второй фермент, далее - на третий. Это обеспечивает быстрое и эффективное течение процесса. Разберем это на примере гликолиза. Гликолиз представляет собой ряд последовательных ферментативных реакций. Его обслуживает 13 ферментов, и в ходе его образуется более десятка промежуточных веществ. Суммарное уравнение гликолиза можно записать так:

С6Н12О6 + 2Н3РО4 + 2АДФ = 2С3Н6О3 + 2АТФ + 2Н2О

Из приведенного уравнения гликолиза видно, что в этом процессе не участвует кислород, поэтому его называют бескислородным или неполным расщеплением. Наконец, и это особенно важно, из уравнения следует, что при распаде одной молекулы глюкозы в ходе гликолиза образуются две молекулы АТФ.

Так как синтез АТФ представляет эндотермический процесс, то, очевидно, энергия для синтеза АТФ черпается за счет энергии реакций бескислородного расщепления глюкозы. Следовательно, энергия, освобождающаяся в ходе реакций гликолиза, не вся переходит в тепло. Часть её идет на синтез двух богатых энергией фосфатных связей.

Третий этап энергетического обмена - стадия кислородного, или полного расщепления, или дыхания. Продукты, возникшие в предшествующей стадии, окисляются до конца.

Основное условие осуществления этого процесса - наличие кислорода. Стадия кислородного расщепления, как и предыдущая стадия, представляет собой ряд последовательных ферментативных реакций. Его обслуживает несколько ферментов.

Весь ферментативный ряд кислородного расщепления сосредоточен в митохондриях, где ферменты расположены на мембранах правильными рядами. Все промежуточные реакции кислородного расщепления идут с освобождением энергии. Количество энергии, освобождаемой на каждой ступени при кислородном расщеплении, составляет 2600 кДж, в результате образуется 36 молекул АТФ.

2С3Н6О3 + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 42Н2О + 36АТФ

Анаболизм - пластический обмен - диссимиляция - одна из сторон обмена веществ. Включает процессы синтеза аминокислот, моносахаридов, жирных кислот, нуклеотидов, а также макромолекул белков, полисахаридов, жиров, нуклеиновых кислот, АТФ. Процесс происходит в три этапа:

синтез промежуточных соединений из низкомолекулярных веществ (органических кислот, альдегидов);

синтез «строительных блоков» из промежуточных соединений (аминокислот, жирных кислот, моносахаридов);

синтез макромолекул белков, нуклеиновых кислот, полисахаридов, жиров.

Этот процесс идет с поглощением энергии и участием ферментов.

Пластический и энергетический обмены находятся в неразрывной связи между собой. С одной стороны, реакции биосинтеза нуждаются в затрате энергии. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез обслуживающих эти реакции ферментов. Сложные системы реакций ассимиляции и диссимиляции связаны не только между собой, но и внешней средой. Из внешней среды в клетку поступают вещества, во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.

Ассимиляция и диссимиляция у здорового человека находятся в состоянии строго сбалансированного равновесия. При голодании, недостаточном и неполноценном питании, при лихорадочных состояниях преобладают процессы катаболизма, при которых организм использует свои запасные вещества, что может привести к истощению и гибели. В период выздоровления, роста и развития организма преобладает анаболизм. Патологически выраженное преобладание анаболизма может привести к ожирению, гигантизму.

Интенсивность обмена веществ зависит от возраста человека, характера выполняемой работы. Обмен веществ регулируется нервной системой, гормонами. Так, на белковый обмен оказывает влияние гормон щитовидной железы - тироксин, на жировой - гормоны поджелудочной и щитовидной желез, надпочечников и гипофиза, на углеводный - гормоны поджелудочной железы (инсулин) и надпочечников (адреналин). Кроме того, все процессы протекают при участии ферментов.

Белковый обмен.

Белки являются поставщиками строительного материала - аминокислот - для синтеза видоспецифичных клеточных структур. Белковый обмен начинается с поступления по воротной системе в печень крови, несущей аминокислоты из кишечника. Необходимые аминокислоты возвращаются в кровь и поступают в органы и ткани, где они необходимы для биосинтеза белка, поскольку белки очень быстро синтезируются и быстро расходуются и синтезируются заново. Так, белки печени обновляются через четверо суток, белки мышц через 24 дня, кожи - через 300 дней. Избыточны аминокислоты подвергаются в печени дезаминированию, при котором с помощью ферментов отщепляется аминогруппа. Остатки аминокислот преобразуются либо в глюкозу, либо в гликоген, либо в запасной жир. Белки в запас не откладываются.

В состав белков входят аминокислоты, их подразделяют на заменимые и незаменимые. Заменимые могут синтезироваться в организме, незаменимые поступают с пищей. Аминокислотный состав пищевых белков неодинаков. Если в них нет незаменимых аминокислот (лейцин, лизин, Валин и др.), то в организме нарушается белковый синтез, появляются расстройства жизнедеятельности.

Заменимые аминокислоты синтезируются в организме из продуктов расщепления белка и поэтому могут в пище отсутствовать. В зависимости от аминокислотного состава меняется и биологическая ценность белка. Наиболее ценные белки животного происхождения. Низкой биологической ценностью обладают белки пшеницы, ячменя, кукурузы, т. к. в них отсутствуют многие незаменимые аминокислоты.

Жировой обмен.

Большая часть жиров в организме используется как источник энергии. Жир поступает в организм с пищей. В кишечнике жиры под влиянием ферментов распадается на глицерин и жирные кислоты. В эпителии тонкого кишечника начинается синтез собственных человеческих жиров. Получившаяся жировая эмульсия поступает в лимфатическую систему, которая приносит её в печень, где жиры разного происхождения распределяются на нейтральные (триглицериды), идущие в жировое депо (10-20% массы тела), половина из них идет в подкожную жировую клетчатку, остальные на жировой сальник (на животе) и т. д. и пластические жиры. Это фосфолипиды. Они становятся компонентами клеточных мембран, липопротеидов и др. Эти жиры содержат больше ненасыщенных жирных кислот и синтезируются в организме из белков и углеводов. К этой группе веществ относятся стероиды тканей мозга, коры надпочечников, в частности холестерин - жироподобное вещество из группы стероидов, а также является исходным для синтеза половых гормонов. Нарушение жирового обмена начинается с нарушения углеводного обмеа, вследствии чего не только накапливается избыток жира, но и в крови появляются промежуточные продукты - «ацетоновые тела», их норма по ацетону 1 - 2 мг, а при ее повышении, особенно у больных сахарным диабетом, происходит отравление.

Углеводный обмен начинается с всасывания глюкозы через ворсинки кишечника. По воротной системе она с кровью переносится в печень, где 2-3% поступившей глюкозы превращается в гликоген и накапливается. Всего в печени запасается 100-400 г гликогена, что расходуется за 12-24 ч, после чего уровень сахара в крови поддерживается за счет преобразования аминокислот в глюкозу. Уровень сахара в крови - 80-100 мг. При достаточном поступлении белков в организм печень способна до 60% аминокислот пищи дезаминировать и превратить в глюкозу. Мышечные ткани также способны преобразовывать глюкозу крови в гликоген. Это происходит при усиленной мышечной работе. В печени глюкоза преобразуется в жир. Функция печени регулируется гормонами и вегетативной нервной системой.

Водно-солевой обмен начинается с потребления человеком воды, количество которой определяется центром жажды, расположенным в гипоталамусе. Потребление воды, заключенной в пищевых продуктах, готовых блюдах, этим центром не регулируется. Поэтому надо уметь контролировать тот объем воды, которой мы потребляем. В суткеи в разном виде в организм поступает 2, 5-4 л воды, изних1, 2-1, 5 л выводится через почки, 0, 8 л через кожу, 0, 5 л через легкие и 0, 1-0, 15 л с калом. При сбалансированном поступлении и выходе воды организм работает нормально. Но бывает нарушения: при недостатке антидиуретического гормона и вазопрессина происходит обильный выход мочи и человек мучается неутолимой жаждой. Сильные потери воды (20%) наблюдается при отравлениях, при нарушении всасывания воды в толстом кишечнике. Противоположные явления наблюдаются при накоплении излишней воды в организме и образовании отеков конечностей, лица. Причины связаны с нарушением функции почек, сердца, местными повреждениями тканей. Кроме того воду в организме удерживает соль, острые приправы, жареное.