Наряду с применением ПАВ следует учитывать факторы, которые напрямую влияют на эффективность кристаллизации.
Потери сахара в мелассе составляют примерно 70% от суммарных потерь, т.е. являются самыми большими в сахарном производстве. Снижение величины этих потерь является актуальной задачей сахарной промышленности, имеющей важное значение для повышения выхода сахара.
Решающим фактором, влияющим на содержание сахара в мелассе, является величина ее чистоты. При прочих равных параметрах изменение величины чистоты мелассы приводит к изменению содержания сахара в мелассе на 0,08-0,1% к массе свеклы. В этой связи снижение чистоты мелассы является одним из эффективных путей уменьшения содержания сахара в ней.
Величина чистоты мелассы уменьшается с увеличением содержания в ней сухих веществ. Однако увеличение сухих веществ лимитируется вязкостью мелассы и разделяющей способностью центрифуг. Нормальная работа центрифуг при разделении утфеля последней кристаллизации возможна в том случае, если вязкость отделяемой мелассы равна 7,1 Па·с для центрифуг с числом оборотов 1500 об/мин при температуре 40 0С.
Содержание сухих веществ в мелассе с такой вязкостью соответствует их содержанию в нормальной мелассе. Обязательным условием для нормальной мелассы является то, чтобы она была насыщенным раствором, так как в случае пересыщения содержание сахара в ней будет выше.
Величина чистоты нормальной мелассы является важнейшим критерием, по которому проводится контроль за истощением мелассы на сахарном заводе. Большее значение величины чистоты заводской мелассы в сравнении с величиной чистоты нормальной мелассы свидетельствует о недостаточном истощении ее на заводе, что приводит к повышенному содержанию сахара в мелассе и соответственно к уменьшению выхода готовой продукции.
Нормальная меласса не является «предельно истощенной» мелассой. При отделении мелассы с большей концентрацией сухих веществ можно получить мелассу со значением чистоты ниже чистоты нормальной мелассы. Однако это зависит от возможностей работы станции центрифугирования.
Сложность и многообразие условий, влияющих на процесс кристаллизации увариванием и охлаждением утфелей последней кристаллизации, не позволяют окончательно определить способы обработки утфелей последней кристаллизации, обеспечивающих минимальное содержание сахара в мелассе.
Дальнейшее уточнение технологических параметров утфеля последнего продукта, режима его кристаллизации при охлаждении и способов подготовки перед центрифугированием является актуальным для разработки мероприятий, направленных на снижение сахара в мелассе.
1.10. Способ выгрузки дистиллированных ацетилированных моноглицеридов из тары, приготовления эмульсии и ввода ее в вакуум-аппараты и кристаллизаторы
Для облегчения операций по выгрузке дистиллированных ацетилированных моноглицеридов из тары, приготовления эмульсии и ввода ее в вакуум-аппараты, а также улучшения санитарно-гигиенических условий труда может быть использована специальная установка.
Установка состоит из емкости, в которую ацетилированные моноглицериды дистиллированные выгружают из тары для хранения шестеренного насоса, обеспечивающего подачу ПАВ в расплавленном состоянии в смеситель для приготовления эмульсии, и вспомогательного оборудования. Смеситель снабжен шестеренным насосом для подачи эмульсии по кольцевому трубопроводу в мерники-дозаторы, расположенные на корпусах вакуум-аппаратов.
Емкость для хранения ПАВ располагается на 1 этаже завода в удобном для обслуживания месте и представляет собой горизонтальный цилиндрический сосуд. В верхней части емкости находится загрузочный и смотровой люки. В днище емкости вмонтирован фильтроотстойник для улавливания твердых примесей. Фильтроотстойник снабжен вентилем с патрубком для удаления остатков ацетилированных моноглицеридов дистиллированных. Внутри емкости имеется элемент подогрева, изготовленный из труб диаметром 15 мм в виде змеевика цилиндрической формы.
Загрузочный люк снабжен паровой форсункой и унифицированной головкой, приспособленной для фляг. Для выгрузки ПАВ флягу устанавливают на загрузочный люк горловиной вниз, после чего включают пар на форсунку. При этом ацетомоноглицериды начинают плавиться и стекают в смесь. Тщательность удаления ПАВ из тары контролируют осмотром внутренних полостей фляг.
Смеситель для приготовления эмульсии представляет собой вертикальный цилиндрический сосуд с коническим днищем. Он монтируется на площадке вакуум-аппаратов. В смеситель вмонтирован элемент для подогрева эмульсии. В нижней конической части смесителя находится фильтр-отстойник с вентилем для удаления остатков ПАВ. Мерники-дозаторы представляют собой цилиндрические емкости типа масленок. Объем мерника-дозатора должен обеспечивать подачу всего количества ПАВ (в виде эмульсии) на одно уваривание.
Для предотвращения образования затвердевших комков ацетомоноглицеридов в холодном трубопроводе перед подачей ПАВ в смеситель кольцевая коммуникация должна быть пропарена в течение 10…15 минут. Пар поступает в трубопровод при открытом вентиле. Работа насоса и подача ПАВ в смеситель контролируется по манометру и сбросу ПАВ в емкость с концевой ветви кольцевого трубопровода.
Необходимое количество ПАВ загружается в смеситель при помощи вентиля на патрубке коммуникации. После окончания работы и остановки насоса производится сброс ПАВ с нагнетательной ветви трубопровода в емкость и его пропарка.
Для приготовления эмульсии в смеситель по трубопроводу подается вода, а по другому трубопроводу – второй оттек утфеля I кристаллизации. Затем на элемент подогрева подается пар, температура смеси доводится до 60 0С, после чего открывается вентиль, включается режим «на себя» насос для перемешивания смеси и набираются ацетомоноглицериды. Компоненты эмульсии: вода, второй оттек утфеля I ступени кристаллизации и АМГД – набираются в равных объемах.
Насос для подачи эмульсии ПАВ по кольцевому трубопроводу в мерники-дозаторы включается после получения однородной, без комков эмульсии ПАВ.
Для заполнения мерника-дозатора открывают вентиль на кольцевом трубопроводе и эмульсия ПАВ под действием вакуума всасывается в аппарат через вентиль, установленный между мерником-дозатором и вакуум-аппаратом.
1.11. Содержание ацетмоноглицеридов в мелассе
В процессе кристаллизации сахара практически все количество ПАВ находится в межкристальном растворе и затем накапливается в мелассе. Содержание ПАВ в мелассе до 0,1% к ее массе способствует более эффективному процессу брожения мелассы и увеличению выхода спирта. Содержание ПАВ в мелассе свыше 0,1% к ее массе замедляет процесс брожения и выход спирта уменьшается.
В связи с отсутствием в настоящее время физико-химических методов определения содержания дистиллированных ацетилированных моноглицеридов в мелассе следует контролировать их содержание путем расчета, исходя из величины их добавки к утфелям разных степеней кристаллизации.
При одновременном введении ПАВ в утфели I, II и III кристаллизации в соответствии с рекомендуемыми величинами содержание ацетомоноглицеридов в мелассе составит 0,0803% к массе мелассы. Очевидно, что такое содержание ПАВ в мелассе приближается к допустимому уровню. Для гарантии получения хорошо сбраживаемой мелассы содержание ацетомоноглицеридов в ней следует уменьшить.
Этого можно достичь, если вводить ПАВ в основном в утфель III кристаллизации (последней ступени), где эффективность влияния ПАВ на интенсификацию уваривания самая высокая.
1.12. Влияние ПАВ на хранение мелассы
На сахарных заводах меласса часто выводится на хранение с пониженным содержанием сухих веществ и рН, повышенной концентрацией аминосоединений, инвертного сахара, температурой выше 40-50 0С и выше. При хранении такой мелассы создаются условия для активного меланоидинообразования, инвертирования сахарозы, разложения моносахаридов с образованием органических кислот и др. Многие реакции экзотермические, протекают с выделением тепла, водорода, азота и диоксида углерода.
Иногда интенсивность указанных химических реакций столь велика, что за короткое время температура мелассы поднимается до 60-70 0С и более, значительная часть сахара разрушается до углерода и меласса превращается в черно-коричневую вязкую массу с резким запахом, вспененную из-за обильного выделения газов.
Чтобы определить изменения, происходящие в мелассе во время хранения при повышенных температурах, а также действие некоторых добавок на ее качественные показатели, были проведены лабораторные опыты, в которых использовали усредненный образец свеклосахарной мелассы с содержанием СВ 81% и рН 5,4.
Образец разделили на две части: в первой установили рН 4,9, а во второй – рН 8. Во вторую часть ввели 0,05% КНSО3 и 0,04% ПАВ к массе мелассы.
Затем обе части разделили еще раз и 150 суток термостатировали при температуре 35 и 50 0С. После этого образцы мелассы осветляли в поле центробежных сил и анализировали в одинаковых условиях. Для измерения вязкости использовали вискозиметр Гепплера, соединенный с термостатом. Предварительно из исследуемых образцов с помощью вакуум-насоса удаляли пузырьки воздуха.
После хранения при 500С без КНSО3 содержание общего сахара в мелассе уменьшилось на 16,2%, а с КНSО3 – только на 11,3%, что на 4,9% меньше, чем в первом опыте без ингибитора. При этом во втором опыте цветность мелассы была ниже на 510 усл.ед., а вязкость – на 460 мПа·с. В два раза снизилось увеличение
объема за счет газообразования. Эти показатели свидетельствуют о том, что гидросульфит калия ингибирует разрушающие реакции в мелассе. В опытах с рН 4,9 при резком снижении концентрации сахарозы сохранялась высокая концентрация инвертного сахара, а с рН 8,0, наоборот, инвертного сахара почти не было, а сахароза присутствовала. Это обусловлено тем, что изокаталитическая зона для инвертного сахара находилась в интервале рН 3,0-3,5, а для сахарозы – при рН 7,5-8,5.