Смекни!
smekni.com

Земля - планета Солнечной системы (стр. 3 из 6)

Исследования, проведенные за последние 10–15 лет, подтвердили высказанные ранее предположения о существовании в Солнечной системе еще одного пояса малых тел. Здесь за орбитой Нептуна открыто уже свыше 800 объектов диаметром от 100 до 800 км, размеры некоторых превышают 2000 км. После всех этих открытий Плутон, диаметр которого составляет 2400 км, был лишен статуса большой планеты Солнечной системы. Предполагается, что общая масса «занептунных» объектов может быть равна массе Земли. Вероятно, эти тела содержат в своем составе значительное количество льда и больше похожи на ядра комет, чем на астероиды, находящиеся между Марсом и Юпитером.

Кометы, которые из-за своего необычного вида (наличие хвоста) с древнейших времен обращали на себя внимание всех людей, не случайно относятся к малым телам Солнечной системы. Несмотря на внушительные размеры хвоста, который может превышать в длину 100 млн км, и головы, которая по диаметру может превосходить Солнце, кометы справедливо называют «видимое ничто». Вещества в комете очень немного, практически все оно сосредоточено в ядре, которое представляет собой небольшую (по космическим меркам) снежно-ледяную глыбу с вкраплением мелких твердых частиц различного химического состава. Так, ядро одной из самых знаменитых комет – кометы Галлея, изображение которой было в 1986 г. получено КА «Вега», имеет длину всего 14 км, а ширину и толщину – вдвое меньше. В этом «грязном мартовском сугробе», как часто называют кометные ядра, содержится примерно столько замерзшей воды, сколько в снежном покрове, выпавшем за одну зиму на территории Московской области.

Кометы отличает от других тел Солнечной системы прежде всего неожиданность их появления, о чем в свое время писал А. С. Пушкин: «Как незаконная комета в кругу расчисленных светил…»

В этом лишний раз убедили нас события последних лет, когда в 1996 и 1997 гг. появились две очень яркие, видимые даже невооруженным глазом кометы. По традиции они названы по фамилиям тех, кто их открыл, – японского любителя астрономии Хиякутаки и двух американцев – Хейла и Боппа. Столь яркие кометы обычно появляются раз в 10–15 лет (таких, которые видны только в телескоп, ежегодно наблюдают 15–20). Предполагается, что в Солнечной системе существует несколько десятков миллиардов комет и что Солнечная система окружена одним или даже несколькими облаками комет, которые движутся вокруг Солнца на расстояниях в тысячи и десятки тысяч раз больших, чем расстояние до самой дальней планеты Нептун. Там, в этом космическом сейфе-холодильнике, миллиарды лет с момента образования Солнечной системы «хранятся» кометные ядра.

Когда ядро кометы приближается к Солнцу, оно разогревается, теряет газы и твердые частицы. Постепенно ядро распадается на все более и более мелкие фрагменты. Частицы, входившие в его состав, начинают обращаться вокруг Солнца по своим орбитам, близким к той, по которой двигалась комета, породившая этот метеорный поток. Когда частицы этого потока встречаются на пути нашей планеты, то, попадая в ее атмосферу с космической скоростью, они вспыхивают в виде метеоров. Оставшаяся после разрушения такой частицы пыль постепенно оседает на поверхность Земли.

Столкнувшись с Солнцем или большими планетами, кометы «погибают». Неоднократно были отмечены случаи, когда при движении в межпланетном пространстве ядра комет раскалывались на несколько частей. Видимо, не избежала этой участи и комета Галлея.

Особенности физической природы планет, астероидов и комет находят достаточно хорошее объяснение на основе современных космогонических представлений, что позволяет считать Солнечную систему комплексом тел, имеющих общее происхождение.

5. Происхождение Солнечной системы

Возраст наиболее древних пород, обнаруженных в образцах лунного грунта и метеоритах, составляет примерно 4,5 млрд лет. Расчеты возраста Солнца дали близкую величину – 5 млрд лет. Принято считать, что все тела, которые в настоящее время составляют Солнечную систему, образовались примерно 4,5–5 млрд лет тому назад.

Согласно наиболее разработанной гипотезе, все они сформировались в результате эволюции огромного холодного газопылевого облака. Эта гипотеза достаточно хорошо объясняет многие особенности строения Солнечной системы, в частности, значительные различия двух групп планет.

В течение нескольких миллиардов лет само облако и входящее в его состав вещество значительно изменялись. Частицы, из которых состояло это облако, обращались вокруг Солнца по самым различным орбитам.

В результате одних столкновений частицы разрушались, а при других – объединялись в более крупные. Возникали более крупные сгустки вещества – зародыши будущих планет и других тел.

Подтверждением этих представлений можно считать и метеоритную «бомбардировку» планет – по сути, она является продолжением того процесса, который в прошлом привел к их образованию. В настоящее время, когда в межпланетном пространстве метеоритного вещества остается все меньше и меньше, этот процесс идет значительно менее интенсивно, чем на начальных стадиях формирования планет.

Вместе с тем в облаке происходили перераспределение вещества, его дифференциация. Под влиянием сильного нагрева из окрестностей Солнца улетучивались газы (в основном это самые распространенные во Вселенной – водород и гелий) и оставались лишь твердые тугоплавкие частицы. Из этого вещества сформировались Земля, ее спутник– Луна, а также другие планеты земной группы.

В процессе формирования планет и позднее на протяжении миллиардов лет в их недрах и на поверхности происходили процессы плавления, кристаллизации, окисления и другие физико-химические процессы. Это привело к существенному изменению первоначального состава и строения вещества, из которого образованы все ныне существующие тела Солнечной системы.

Вдали от Солнца на периферии облака эти летучие вещества намерзали на пылевые частицы. Относительное содержание водорода и гелия оказалось повышенным. Из этого вещества сформировались планеты-гиганты, размеры и масса которых значительно превышают планеты земной группы. Ведь объем периферийных частей облака был больше, а стало быть, больше и масса вещества, из которого образовались далекие от Солнца планеты.

Данные о природе и химическом составе спутников планет– гигантов, полученные в последние годы с помощью космических аппаратов, стали еще одним подтверждением справедливости современных представлений о происхождении тел Солнечной системы. В условиях, когда водород и гелий, ушедшие на периферию про-топланетного облака, вошли в состав планет-гигантов, их спутники оказались похожими на Луну и планеты земной группы.

Однако не все вещество протопланетного облака вошло в состав планет и их спутников. Многие сгустки его вещества остались как внутри планетной системы в виде астероидов и еще более мелких тел, так и за ее пределами в виде ядер комет.

6. Солнце

Солнце – центральное тело Солнечной системы – является типичным представителем звезд, наиболее распространенных во Вселенной тел. Как и многие другие звезды, Солнце представляет собой огромный газовый шар, находящийся в равновесии в поле собственного тяготения.

С Земли мы видим Солнце как небольшой диск, угловой диаметр которого примерно равен 0,5°. Его край достаточно четко определяет граница того слоя, от которого приходит свет. Этот слой Солнца называется фотосферой (в переводе с греческого – сфера света).

Солнце испускает в космическое пространство колоссальный по мощности поток излучения, который в значительной мере определяет условия на поверхности планет и в межпланетном пространстве. Полная мощность излучения Солнца, его светимость составляет 4 · 1023 кВт. Земля получает всего лишь одну двухмиллиардную долю солнечного излучения. Однако и этого достаточно, чтобы приводить в движение огромные массы воздуха в земной атмосфере, управлять погодой и климатом на земном шаре.

Основные физические характеристики Солнца

Масса (M) = 2 · 1030кг.

Радиус (R) = 7 · 108м.

Средняя плотность (р) = 1,4 · 103 кг/м3.

Ускорение силы тяжести (g) = 2,7 · 102 м/с2.

На основе этих данных, используя закон всемирного тяготения и уравнение газового состояния, можно рассчитать условия внутри Солнца. Такие расчеты позволяют получить модель «спокойного» Солнца. При этом принимается, что в каждом его слое соблюдается условие гидростатического равновесия: действие сил внутреннего давления газа уравновешивается действием сил тяготения. Согласно современным данным, давление в центре Солнца достигает 2 · 108 Н/м2, а плотность вещества значительно превышает плотность твердых тел в земных условиях: 1,5 · 105 кг/м3, т. е. в 13 раз больше плотности свинца. Тем не менее применение газовых законов к веществу, находящемуся в этом состоянии, оправдано тем, что оно ионизовано. Размеры атомных ядер, потерявших свои электроны, примерно в 10 тысяч раз меньше размеров самого атома. Поэтому размеры самих частиц пренебрежимо малы по сравнению с расстояниями между ними. Это условие, которому должен удовлетворять идеальный газ, для смеси ядер и электронов, составляющих вещество внутри Солнца, выполняется, несмотря на его высокую плотность. Такое состояние вещества принято называть плазмой. Ее температура в центре Солнца достигает примерно 15 млн К.

При столь высокой температуре протоны, которые преобладают в составе солнечной плазмы, имеют столь большие скорости, что могут преодолеть электростатические силы отталкивания и взаимодействовать между собой. В результате такого взаимодействия происходит термоядерная реакция: четыре протона образуют альфа-частицу – ядро гелия. Реакция сопровождается выделением определенной порции энергии – гамма-кванта. Из недр Солнца наружу эта энергия передается двумя способами: излучением, т. е. самими квантами, и конвекцией, т. е. веществом.