Дарвин же рассматривал эволюцию с позиции диалектического единства необходимого и случайного. Безразличная природа вызывает в организмах случайные наследственные изменения, затем через естественный отбор безжалостно отсекает тех, кто случайно оказался менее приспособленным, и оставляет тех, кто случайно оказался достаточно приспособленным к условиям внешней среды. В результате с необходимостью совершается процесс эволюционного развития видов. Развитие идет по пути отбора более приспособленных, при этом природе безразлично, будут ли эти организмы более сложно или, напротив, менее сложно организованы. Возможности приспособления в тех или иных условиях могут быть весьма разнообразны. В итоге и возникает наблюдаемое нами многообразие видов животных и растений. Как известно, на Земле сейчас имеются около 1,5 миллионов видов животных и около 0,5 миллиона видов растений.
Учение Дарвина получило всеобщее признание. Однако в нем есть одно «большое место», на которое указал Дарвину в 1867 году преподаватель из Эдинбурга Флеминг Джекинс. Он заметил, что в дарвиновской теории нет ясности в вопросе о том, как осуществляется накопление в потомстве тех или иных изменений. Ведь сначала изменения признака происходят лишь у некоторых особей. Эти особи скрещиваются с нормальными особями. В результате, утверждал Джекинс, должно наблюдаться не накопление измененного признака в потомстве, а, напротив, его разбавление, постепенное стирание – вплоть до исчезновения ( в первом поколении потомства остается ½ изменения, во втором поколении ¼ изменения, в третьем 1/8 изменения, в четвертом 1/16 изменения и т.д.)
В течение пятнадцати лет, до самой своей кончины, Дарвин размышлял над вопросом, поставленным Джекинсом. Решение проблемы он так и не нашел.
А между тем это решение существовало уже в 1865 году. Его получил преподаватель монастырской школы в Брюнне (теперь Брно, Чехословакия) Грегор Иоганн Мендель. Увы, Дарвин ничего не знал об исследованиях Менделя. Он так и никогда и не узнал о них.
Грегор Иоганн Мендель (1822 – 1884). Свои знаменитые опыты с горохом Мендель начал проводить за три года до выхода в свет «Происхождения видов». Когда появилась книга Дарвина, он внимательно прочитал ее и в дальнейшем живо интересовался всеми работами Дарвина. Говорят, что однажды Мендель заметил по поводу дарвиновской теории: « Это еще не все, еще чего-то здесь не хватает». Исследования Менделя как раз и были направлены на то, чтобы заделать «брешь» в теории Дарвина. Мендель занимался гибридизацией, он хотел проследить судьбу изменений генотипов в разных поколениях гибридов. Объектом исследования Мендель выбрал горох.
Мендель взял два сорта гороха – с желтыми и зелеными семенами. Скрестив эти два сорта, он обнаружил в первом поколении гибридов горох только с желтыми семенами. Зеленый горох словно сквозь землю провалился. Затем Мендель произвел самоопыление полученных гибридов и получил второе поколение гибридов. В этом поколении снова появились особи с зелеными семенами. Правда, их оказалось заметно меньше, чем с желтыми. Мендель тщательно подсчитал число тех и других и получил, что число особей с желтыми семенами относится к числу особей с зелеными семенами как
X : Y = 6022 : 2001 = 3,01 : 1.
Параллельно Мендель проводил еще шесть опытов. В каждом опыте он использовал два сорта гороха, различавшихся по какому-либо одному определенному признаку. Так, в одном из опытов он скрестил горох с гладкими семенами и горох с морщинистыми семенами. В первом поколении гибридов он наблюдал только растения с гладкими семенами. Во втором появились также растения с морщинистыми семенами. Отношения числа особей с гладкими семенами к числу особей с морщинистыми семенами составило
X : Y = 5474 : 1850 = 2,96 : 1.
В остальных пяти опытах скрещивались сорта, различающиеся либо по окраске кожуры, либо по форме плода, либо по его окраске в незрелом состоянии, либо по расположению цветков, либо по размерам растений ( карлики и гиган6ты ).
В каждом опыте в первом поколении гибридов проявлялся только один из двух противоположных родительских признаков. Мендель назвал этот признак доминантным. Другой признак, тот который временно исчезал, он назвал рецессивным. В первом из рассмотренных выше опытов доминантным признаком был желтый цвет семян, а рецессивным – зеленый цвет. Во втором опыте доминантный признак – гладкие семена, рецессивный – морщинистые семена. Отношение X:Y, т.е. числа особей с доминантным признаком к числу особей с рецессивным признаком среди гибридов второго поколения для этих двух опытов, мы уже приводили. В остальных пяти опытах Мендель получил:
X : Y = 705 : 224 = 3,15 : 1 ;
X : Y = 882 : 299 = 2,95 : 1 ;
X : Y = 428 : 152 = 2,82 : 1 ;
X : Y = 651 : 207 = 3,14 : 1 ;
X : Y = 787 : 277 = 2,84 : 1 .
Во всех случаях отношение X : Y оказывается достаточно близким к отношению 3 : 1.
В итоге Мендель мог с уверенностью утверждать: при скрещивании растений с противоположными признаками происходит не разбавление признаков ( как полагал Дженкинс ), а подавление одного признака другим, в связи с этим необходимо различать доминантные и рецессивные признаки;
в гибридах первого поколения проявляется только доминантный признак, рецессивный признак полностью подавлен ( правило единообразия гибридов первого поколения);
гибриды первого поколения при размножении самоопылением расщепляются: во втором поколении появляются особи как с доминантным, так и с рецессивным признаками, причем отношение числа первых к числу вторых равно примерно 3:1.
Мендель, однако, не остановился на этом. Он произвел самоопыление гибридов второго поколения и получил гибриды третьего, а затем и четвертого поколения. Ученый обнаружил, что гибриды второго поколения с рецессивным признаком при дальнейшем размножении не расщепляется ни в третьем, ни в четвертом поколениях. Так же ведет себя примерно треть гибридов второго поколения с доминантным признаком. Две трети гибридов второго поколения с доминантным признаком расщепляются при переходе к гибридам третьего поколения, причем опять-таки в отношении 3:1. Получившиеся в результате этого расщепления гибриды третьего поколения с рецессивным признаком и треть гибридов с доминантным признаком при переходе к четвертому поколению не расщепляются , а остальные гибриды третьего поколения расщепляются, причем снова в отношении 3:1.
Заметим, что явление расщепления гибридов демонстрирует важное обстоятельство: особи с одинаковыми внешними признаками могут обладать разными наследственными свойствами, что и обнаруживается во внешних признаках их потомства. Мы видим, что по фенотипу нельзя судить с достаточной полнотой о генотипе. Если особь не обнаруживает в потомстве расщепления, то ее называют гомозиготной; если же при размножении она обнаруживает расщепление, то ее называют гетерозиготной. Пример гомозиготных особей – все особи с рецессивным признаком среди гибридов второго поколения.
Полученные Менделем результаты хорошо просматриваются на рисунке 6.1, где желтым цветом показаны организмы с доминантным признаком, а зеленые - – рецессивным. Глядя на этот рисунок, нетрудно уловить определенную закономерность. Мендель разгадал эту закономерность и тем самым раскрыл механизм передачи наследственных признаков от поколения к поколению. Мендель понял, что разгаданная им закономерность имеет вероятностный характер.
Конечно, наблюдения над гибридами производились и до Менделя. Достаточно, например, привести записи современника Менделя Шарля Нодэна, работавшего садовником в Ботаническом саду в Париже : « Начиная со второго поколения, облик гибридов изменяется заметным образом. Столь совершенное единообразие гибридов первого поколения сменяется обычно крайней пестротой форм, одни из которых приближаются к виду отца, другие – к матери…» но до Менделя никто не предпринял систематизированных исследований, с учетом отдельных выделенных признаков, с подсчетом чисел проявлений тех или иных признаков в различных поколениях гибридов. Мендель был первым, кто все это проделал, потратив на опыты восемь лет. Поэтому, в отличии от всех своих предшественников, Мендель понял закономерности наследственной передачи признаков.
Здесь уместно сказать то, что результаты своих исследований Мендель доложил в феврале 1865 года Обществу естествоиспытателей в Брюнне. Слушатели не поняли исключительной важности представленного доклада. Они не догадались, что в этой работе суждено произвести настоящую революцию в науке о наследственности. В 1866 году доклад Менделя был напечатан в Брюнском бюллетене и разослан по списку 120 научным учреждениям разных стран. К сожалению, Дарвин этого бюллетеня не получил.
Мир давно признал Менделя как основателя современной генетики. Это призвание пришло лишь в 1900 году, через пятнадцать лет после кончины талантливого исследователя.
Закономерности случайного комбинирования генов при скрещивании
Хромосомы и гены.
Напомним некоторые сведенья из цитологии – раздела биологии, изучающего клетку. Различают два типа клеток – половые клетки (гаметы) и неполовые, или иначе, соматические. В ядре каждой клетки находятся нитевидные хромосомы, представляющие собой гигантские молекулы дезоксирибонуклеиновой кислоты (сокращенно: ДНК) в соединении с молекулами белков. В хромосомах, а точнее, в молекулах ДНК содержится вся информация, определяющая генотип данного организма. Отдельные участки хромосомы, «ответственные» за те или иные наследственные признаки, называют генами. Каждая хромосома содержит несколько сотен генов. Иногда хромосому упрощенно представляют в виде своеобразной нити, на которую, словно бусинки, нанизаны различные гены.
Каждому виду соответствует определенный набор хромосом, определяемый количеством хромосом и их генными характеристиками. Например, у овса имеются 42 хромосомы, у плодовой мушки дрозофилы 8 хромосом, у шимпанзе 48 хромосом, у человека 46 хромосом. Ядро каждой соматической клетки содержит полный набор хромосом, соответствующий данному виду. Это означает, что в каждой клетке организма содержится вся наследственная информация.