2.5. Алгоритм построения многоканального сигнатурного анализатора.
Для заданных значений
1. Вычисляются постоянные коэффициенты
где
2. Определяются коэффициенты
3. Строится функциональная схема многоканального сигнатурного анализатора на основании полученной системы уравнений
При этом используются результаты этапов 1 и 2, позволяющих однозначно определить топологию связей многовходовых сумматоров по модулю два, на выходах которых формируются значения
2.6. Применение многоканальных анализаторов для диагностики неисправностей.
С помощью многоканальных сигнатурных анализаторов можно существенно ускорить процедуру контроля цифровых схем, которая практически увеличивается в n раз, где n – количество входов применяемого анализатора. В случае совпадения реально полученной сигнатуры с её эталонным значением считается, что с достаточно высокой вероятностью проверяемая цифровая схема находится в исправном состоянии. На этом процедура её исследования оканчивается. В противном случае, когда схема содержит неисправности, реальная сигнатура, как правило, отличается от эталонной, что служит основным аргументом для принятия гипотезы о неисправном состоянии схемы. В тоже время вид полученной сигнатуры не несёт никакой дополнительной информации о характере возникшей неисправности. Более того, остаётся открытым вопрос о том, какие из n анализируемых последовательностей, инициирующих реальную сигнатуру, содержат ошибки, т.е. возникает задача локализации неисправности с точностью до последовательности, несущей информацию о её присутствии. Рассмотрим возможные варианты решения данной задачи для случая применения n – канальных анализаторов.
Предварительно докажем следующую теорему.
Теорема. Суммарная сигнатура S(x), полученная для последовательностей
Доказательство. В n – канальном анализаторе n входных последовательностей преобразуются в одну вида:
Такая входная последовательность, анализируемая n канальным сигнатурным анализатором, описывается следующим двоичным полиномом:
который состоит из суммы по модулю два полиномов вида:
описывающих выходные последовательности
где
Просуммировав по модулю два правые и левые части равенства (2.6.3), получим, что полином
для которого также справедливо соотношение
В результате сравнения двух последних равенств можно заключить, что суммарная сигнатура S(x), полученная для последовательностей
что и требовалось доказать.
Основной результат данной теоремы, выраженный соотношением (2.6.5), справедлив для примитивного полинома
Используя результаты теоремы, можно формализовать процедуру контроля цифровой схемы. При этом входными последовательностями
Алгоритм контроля цифровой схемы локализацией неисправности до первой последовательности, содержащей вызванные ею ошибки.
В результате анализа n=2d реальных последовательностей
По выражению
вычисляется эталонное значение сигнатуры S(x).
Реальное значение сигнатуры S*(x) сравнивается с эталонной сигнатурой S(x). В случае выполнения равенства S*(x) и S(x) считается процедура диагностики оконченной. В противном случае, когда S*(x)¹S(x) выполняется следующий этап алгоритма.
Все множество входных последовательностей разбивается на две группы, причём номера последовательностей
В результате анализа реальных последовательностей, номера которых задаются множеством А1 на n – канальном сигнатурном анализаторе при условии, что последовательности, номера которых определяет множество А2, являются нулевыми, определяется значение реальной сигнатуры.
На основании выражения
определяем S(x).
Проверяется справедливость равенства S*(x)=S(x), в случае выполнения множество А1 заменяется элементами множества А2.
Значение переменной i увеличивается на 1 и сравнивается с величиной n, если i<n, то совершают вышеприведённые действия с элементами множества А2.
Единственный элемент множества А1 представляет собой номер ошибочной последовательности.
Процедура контроля цифровой схемы считается законченной.
2.7. Оценка достоверности многоканального сигнатурного анализатора.
Учитывая эквивалентность функционирования n - канального сигнатурного анализатора и соответствующего ему одноканального анализатора относительно результата сжатия n входных последовательностей