Контрольное задание, вариант № 7
Группа Э-41-З, студент **********
Министерство Образования Украины
Кременчугский Государственный Политехнический Институт
Кременчуг 1998
Преобразовать числа из десятичной системы счисления в двоичную и шестнадцатеричную : 5 ; 38 ; 93 ; 175 ; 264.
Десятичная система | Двоичная система | Шестнадцатеричная система | |||||||||||
5 | 0 | 0 | 0 | 0 | 40 | 0 | 1 | 0 | 1 | 5 | |||
38 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 26 | |||
93 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 5D | |||
175 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | AF | |||
264 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 108 |
Задача № 2
Преобразовать числа, записанные в прямом двоичном коде в десятичный и шестнадцатеричный код : 0011 ; 1000010 ; 00011011000 .
Прямой двоичный код | Десятичный код | Шестнадцатеричный код | ||||||||||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 3 | ||
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 66 | 42 | ||
0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 216 | D8 |
Задача № 3
Выполнить следующие арифметические действия с двоичными числами, заданными в прямом коде : 0011 + 1000110 ; 10000001 - 1000110
+ | 0 | 0 | 1 | 1 | + | 3 | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | - | 1 | 2 | 9 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 7 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 7 | 0 | ||
1 | 0 | 0 | 1 | 0 | 0 | 1 | 7 | 3 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 5 | 9 |
Задача № 4
Выполнить следующее арифметическое действие в 8-ми разрядной сетке ( старший бит содержит знак числа ) : 5 х 25
х | 0 | . | 0 | 0 | 1 | 1 | 0 | 0 | 1 | х | 2 | 5 |
0 | . | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 5 | |||
0 | 0 | 1 | 1 | 0 | 0 | 1 | ||||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
0 | 0 | 1 | 1 | 0 | 0 | 1 | ||||||
0 | . | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 2 | 5 |
Контрольная работа № 2
Задача № 1
Определить размер памяти в килобайтах ( байтах ), если данная память адресуется с адреса A0EDH по адрес EF34H. Одна ячейка памяти занимает 8 бит
Для решения определим вначале кол-во ячеек памяти, адресуемых одним разрядом при 16- теричной системе адресации.
4-й разряд | 3-й разряд | 2-й разряд | 1-й разряд | H |
4096 | 256 | 16 | 1 | H |
Таким образом, начальный и конечный адреса в десятичной системе будут :
A0EDH = 4096 * 10 + 256 * 0 + 16 * 14 + 1 * 13 + 1= 41198 ;
EF34H = 4096 * 14 + 256 * 15 + 16 * 3 + 1 * 4 +1 = 61237 .
61237 - 41198 = 20039.
20039 = 19 * 1024 + 583.
Итак, размер памяти будет 20039 байт или 19 кБ. 583 байт
Задача № 2
Символьная строка расположена в ОЗУ начиная с адреса 0006H. Известно, что под каждый символ отводится одна ячейка памяти. Число символов в строке = 731. Определить адрес для обращения к последнему символу строки.
Порядковый номер последней ячейки памяти в десятичной системе будет 731 + 6 = 737. Переведем 738 из десятичной системы в двоичную :
73710 = 0010111000012
Теперь переводим в 16 - теричную : 0010111000012 = 02E116
Ответ : адрес последнего символа 02E1H
Задача № 3
Составить программу на Ассемблере с комментариями :
Подсчитать число символов в строке, расположенной в области начиная с адреса 1000H и заканчивая адресом 2000Hбез учета пробелов, если известно, что каждый символ занимает одну ячейку памяти и пробел кодируется как 01H.
Максимальное число символов в строке 2000h -1000h=1000h=409610
После выполнения программы результат будет помещен в HL.
LXISP,3000h ; указание вершины стека
LXIH,1000h ; адрес 1-го элемента => в HL
LXID,1000h ; загрузка счетчика в D,E
XRAA ; обнуление аккумулятора
STA 2001h ; обнуление счетчика количества символов
STA 2002h ; обнуление счетчика количества символов
MVIB,01h ; код пробела => в В
LOOP:
MOVA,M ; загрузить символ из ячейки М в аккумулятор
CMPB ; проверка на код пробела
JNZCOUNT ; если не совпадает, переход к COUNT, иначе - дальше
INXH ; адрес следующего символа
DCXD ; уменьшить счетчик
JZEXIT ; если счетчик = 0, на выход
JMPLOOP ; в начало цикла
COUNT:
PUSHH ; выгрузить содержимое HL в стек
LHLD 2001h ; загрузить HL содержимым счетчика количества символов
INXH ; увеличить счетчик на 1
SHLD 2001h ; сохранить счетчик количества символов в 2001h, 2002h
POPH ; восстановить в HL сохраненный адрес
RET ; возврат из подпрограммы
EXIT:
LHLD 2001h ; загрузить HL содержимым счетчика количества символов
END
Задача № 4
Составить программу на Ассемблере, направленную на решение математической функции :
Z = lg(x+1)
Натуральный и десятичный логарифмы одного и того же числа (в данном случае - выражения) связаны простым соотношением, позволяющим переходить от одного к другому :
lgx = Mlnx , где M = 1/ln10 = 0,434294481903252…
т.е., десятичный логарифм числа x = натуральному логарифму этого же числа, умноженному на постоянный множитель M = 0,434294481903252…, называемый модулем перехода от натуральных логарифмов к десятичным.
В соответствии с вышесказанным, lg (x+1) = 0,434294481903252…* ln(x+1)
Для вычисления ln(x+1) используем разложение в ряд :
ln(x+1) = x-x2/2+x3/3-x4/4+x5/5-x6/6+x7/7-x8/8+…
В результате алгоритм решения сводится к четырем арифметическим действиям : + ; - ; * ; /.
Перед выполнением арифметических действий над числами с плавающей запятой условимся первое число размещать в регистрах EHL, второе – в регистрах DBC; результат операции оставлять в EHL.
Формат представления чисел с плавающей запятой :
S | P | P | P | P | P | P | P | P | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M |
7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
1-й байт | 2-й байт | 3-й байт |
Где : S – знак числа ( 1-отрицательный, 0-положительный ), P0…P7 – 8-битный смещенный порядок, M1 … M15 – мантисса . Скрытый бит целой части мантиссы в нормализованных числах содержит 1
1000h | X |
1001h | |
1003h | |
1003h | X2 |
1004h | |
1005h | |
1006h | X3 |
1007h | |
1008h | |
1009h | X4 |
100Ah | |
100Bh | |
100Ch | X5 |
100Dh | |
100Eh | |
100Fh | X6 |
1010h | |
1011h | |
1012h | X7 |
1013h | |
1014h | |
1020h | Адрес ячейки с текущим XN |
1021h | |
1022h | Текущий N |
До начала вычислений число Х должно быть размещено в памяти по адресам 1000h-1002h.;начало цикла вычислений
CALC1:
LXI H,1003h ; сохранение адреса первой ячейки
SHLD 1020h ; для хранения XN
CALL LOAD ; Загрузка Х в EHL
;цикл вычисления XN
CALC2: CALL LOAD1 ;Загрузка Х в DBC CALL MULF ; Умножение чисел с плавающей точкой
MOV B,H ; HL=>BC
MOVC,L
LHLD 1020h ;загрузить адрес ячейки памяти для хранения Хn
MOV M,E ;Хn => в память
INX H
MOV M,B
INX H
MOV M,C
INX H
SHLD 1020h ;запомнить адрес ячейки памяти для следующего Хn
MOV H,B ;BC=>HL
MOVL,C
LDA 1021h ;содержимое ячейки => в аккумулятор
CPI 15h ;если получены все значения Хn,
JZ CALC3 ;переход на CALC3
JMP CALC2 ;иначе- в начало
CALC3:
LXI H,1022h ;
MVI M,01h ;загрузить в ячейку 1022h делитель
LXI H,1003h ;
SHLD 1020h ;содержимое HL => в память
;цикл вычисления XN/NCALC4: MOV B,H ; HL=>BC MOV C,L LHLD 1020h ;загрузить адрес ячейки памяти для хранения N MOV E,M ;Хn => в регистры INX H MOV B,M INX H MOV C,M SHLD 1020h ;запомнить адрес ячейки памяти для следующего Хn
MOV H,B ;BC=>HL
MOV L,C
PUSH H ;
LXI H,1022h ;N => в ячейку С
MOV C,M
POP H ;
MVI D,00h
MVI B,00h
CALL DIVF ; Деление чисел с плавающей точкой
MOV B,H ; HL=>BC
MOVC,L
LHLD 1020h ;загрузить адрес ячейки памяти для хранения Хn/N
DCX H ;
DCX H ;
MOV M,E ;Хn/N => в память
INX H
MOV M,B
INX H
MOV M,C
INX H
SHLD 1020h ;запомнить адрес ячейки памяти для следующего Хn/N
MOV H,B ;BC=>HL
MOV L,C
PUSH H ;
LXI H,1022h ;N => в ячейку С
MOV C,M ;инкремент N
INR C
MOV M,C
POP H ;
LDA 1021h ;содержимое ячейки => в аккумулятор
CPI 15h ;если получены все значения Хn,
JZ CALC5 ;переход на CALC5
JMP CALC4 ;иначе- в начало
CALC5:
LXI H,1003h ;
SHLD 1020h ;
;
CALC6:
LHLD 1020h ;загрузить адрес ячейки памяти для хранения N
MOV D,M ;Хn/N => в регистры D,B,C.
INX H
MOV B,M
INX H
MOV C,M
INX H
SHLD 1020h ;запомнить адрес ячейки памяти для следующего Хn/N
;
;вычисление ln(x+1)
CALC7: CALL LOAD ; Загрузка Х в EHL CALL SUBF ; Вычитание чисел с плавающей точкой CALL CALC8 ; загрузка Хn+1/N+1 в регистры D,B,C. CALL ADDF ; Сложение чисел с плавающей точкой CALL CALC8 ; загрузка Хn+1/N+1 в регистры D,B,C. CALL SUBF ; Вычитание чисел с плавающей точкой
CALL CALC8 ; загрузка Хn+1/N+1 в регистры D,B,C.
CALL ADDF ; Сложение чисел с плавающей точкой
CALL CALC8 ; загрузка Хn+1/N+1 в регистры D,B,C.
CALL SUBF ; Вычитание чисел с плавающей точкой
CALL CALC8 ; загрузка Хn+1/N+1 в регистры D,B,C.
CALL ADDF ; Сложение чисел с плавающей точкой
CALL CALC8 ; загрузка Хn+1/N+1 в регистры D,B,C.
MVI D,00h ; загрузка модуля пере-
MVI B,2Bh ; хода в DBC
MVIC,2Bh
CALL MULF ; Умножение ln(x+1) на модуль перехода к lg
JMP EXIT ; на выход
;;загрузка Хn+1/N+1 в регистры D,B,C.CALC8: PUSH H LHLD 1020h ;загрузить адрес ячейки памяти для хранения N MOV D,M ;Хn/N => в регистры D,B,C. INX H MOV B,M INX H MOV C,M INX H SHLD 1020h ;запомнить адрес ячейки памяти для следующего Хn/N