Рис. 3.
Прирост точек количественно равен уменьшению числа контрольных точек при увеличениях весового порога. Оптимальное пороговое значение следует выбирать из интервала от (h?, h??), где h? - значение весового порога, соответствующее максимуму прироста числа контрольных точек, h- значение, начиная с которого число контрольных точек равно нулю. Следует отметить, что в литературе имеется указание на то, что оптимальным для распознавания изображений считается получение приблизительно 40 контрольных точек [4].
3. Формирование векторного представления контура
После выполнения алгоритма прослеживания контура и выявления контрольных точек имеется три вектора:
, , - абсциссы, ординаты и веса контрольных точек соответственно. Тройку назовем скелетом изображения . Далее вычислим:центр масс контрольных точек
, где , ;длины радиус-векторов контрольных точек относительно центра масс:
, , а также длины нормированных радиус-векторов , где ;косинусы углов между соседними радиус-векторами контрольных точек:
, ( считая , )Из вычисленных компонент составляем векторы
. Векторы будут инвариантны относительно сдвига, поворота и гомотетии изображения относительно центра масс (если «замкнуть» эти векторы, считая ). Четверку будем называть нормированным векторным представлением изображения . Рассмотрим вопрос об устойчивости центра масс изображения к добавлению новой контрольной точки.Теорема 1. Если к нормированному векторному представлению
добавить контрольную точку с весом , то для евклидова расстояния между новым центром тяжести и старым справедлива оценка , где - точки скелета изображения . В частности, если , то .Другими словами, если число контрольных точек достаточно велико, а вес новой точки небольшой, то центр симметрии сместится незначительно.
4.Функция изображения
Вместо анализа векторного представления
в ряде задач (одна из которых будет рассмотрена в следующем разделе) удобней изучать свойства некоторой функции, связывающей векторы из представления . Например, рассмотрим функцию ,Теорема 2. Пусть
и два скелета изображения такие, что . Тогда, если и соответствующие этим скелетам функции изображения, то , где .Однако при добавлении новой контрольной точки даже с небольшим весом функция изображения, вообще говоря, может сильно измениться, так как она не является инвариантной относительно сдвига векторов векторного представления
. Таким свойством будет обладать, например, функция , хотя коэффициенты этой функции уже не будут однозначно восстанавливаться по ее значениям.5.Распознавание симметрий
Изображение
называется -осесимметричным [6], если оно переводится само в себя после поворота на любой угол, кратный вокруг своего центра масс. Симметрия является важной в задачах распознавания характеристикой изображаемого объекта. Подробный обзор существующих методов обнаружения симметрий и определения ориентации объекта, в том числе и с помощью дескрипторов Фурье, можно найти в работе [6]. Распознавать симметрию можно непосредственно анализируя векторное представления , если оно достаточно точно отражает характер симметрии (не содержит «лишних» контрольных точек). Векторное представление назовем -осесимметричным, если построенный по этому векторному представлению многоугольник будет -осесимметричным. С другой стороны, для распознавания симметрии можно использовать и функцию изображения . В этом случае лучше перейти к комплексной форме записи функции изображения. Обозначим через , где . Тогда и справедлива