Л.С. Берштейн, В.Б. Мелехин
1. Введение
Важным свойством интеллектуальных систем (ИС) является способность к целенаправленному функционированию в недоопределенных проблемных средах (ПС).Для этого система должна обладать возможностью пополнения знаний,позволяющей устанавливать недостающие для принятия решений факты.
На современном этапе развития ИС наибольшее распространение получили следующие способы пополнения знаний: использование сетевых моделей в виде сценариев и применение различных псевдофизических логик{1}. Ограничения на использование первого способа пополнения знаний для ИС активно взаимодействующих с ПС накладывает громоздкость заранее заданных сценариев, требующая большого объема памяти для их хранения. Организация процесса пополнения знаний на основе известных псевдофизических логик затруднена из-за немонотонности вывода умозаключений в произвольной предметной области, приводящей к правдоподобности выявленных фактов, а автономно функционирующие ИС обычно требуют однозначного ответа на вопрос об истинности выводимых фактов.
В работе рассматривается один из возможных путей обхода вышеотмеченных трудностей пополнения знаний ИС, активно взаимодействующих с СП , связанный с применением псевдофизической логики казуально-зависимых предикатов и правил означивания их переменных в процессе вывода умозаключений [ 2 ]. Особенность казуально-зависимых предикатов заключается в том, что в них на предикатные переменные накладываются причинно-следственные ограничения, которые позволяют выделять монотонные участки вывода истинных умозаключений в произвольной области их определения.
2. Казуально-зависимые предикатные переменные и их свойства
Казуально-зависимой предикатной переменной называется пара A(Fa)=(Ca,Fa),где Ca -название или идентификатор переменной: Fa -множество условий принадлежности или требования, которым должны удовлетворять объекты ПС, относящиеся к переменной A(Fa).
В свою очередь, каждый объект ai(Xi) произвольной ПС может определяться множеством характеристик Xi,i=1,n . Тогда пишем, что ai(Xi)ÎA(Fa) ,если Fa ÍXi, в противном случае пишем, что ai(Xi)ÏA(Fa).
Если для двух казуально-зависимых переменных A(Fa) и B(Fb) выполняется условие Fb Ì Fa , то B(Fb) называется покрытием A(Fa) и обозначается A(Fa)Ì B(Fb). Иными словами, все объекты, относящиеся к A(Fa), являются объектами переменной B(Fb). Из сказанного вытекает, что чем шире множество условий и признаков принадлежности, тем меньшее количество объектов ПС может удовлетворить этим условиям, а следовательно, и относиться к соответствующей переменной.
Расширением и сужением казуально-зависимой переменной A(Fa) по признакам принадлежности Fr называются переменные, соответственно, образованные из A(Fa) при помощи присоединения множества Fr к Fa и удаления множества Fr из множества Fa.
Рассмотрим теоретико-множественные операции над казуально-зависимыми переменными, которые могут быть использованы для образования новых переменных на основе исходно-заданных.Пусть переменная A(Fa) определена на элементах базового множества А. Тогда, дополнением A(Fa) к базовому множеству А называется и обозначается переменная A(Fa), элементы ai(Xi) которой не удовлетворяют требованиям Fa, т.е. элементы из А, для которых Fa ËXi . Пересечением переменных A(Fa)=(Ca,Fa) и B(Fb)=(Cb,Fb) называется и обозначается переменная D(Fd)=(Cd,Fd) равная D(Fd)=A(Fa)Ç B(Fb), для которой имя Cd = Ca *Cb определяется объединением имен исходных переменных связкой ”и”, а условия принадлежности Fd= Fa È Fb . Другими словами, переменная D(Fd) включает те и только те объекты из A(Fa) и B(Fb),которые одновременно удовлетворяют требованиям Fa и Fb . Например, пусть A(Fa)- казуально-зависимая переменная с названием ”острые объекты”, а переменная B(Fb) -”длинные объекты” , тогда переменная D(Fd)=A(Fa) B(Fb) является переменной с названием ”длинные и острые объекты”. Объединением переменных A(Fa) и B(Fb) называется и обозначается переменная P(Fp)=A(Fa) B(Fb), для которой
Fp=
Fa Ç Fb,если Fa ÇFb¹Æ;
FaÚ Fb ,если Fa Ç Fb = Æ,
где запись FaÚFb означает, что множество условий принадлежности Fp=Fa ÚFb cостоит из двух независимых подмножеств Fa и Fb и произвольный объект ПС является элементом переменной P(Fb), если он удовлетворяет требованиям хотя бы одного из множеств Fa или Fb. Название Cp переменной P(Fp) образуется из названий Ca и Cb при помощи связки ”или”,например,”длинные или острые объекты”. Пусть казуально-зависимая переменная A(Fa) образуется согласно условию, что все ее объекты должны обладать некоторым свойством, например, обладать умением летать, определяющим ее название - ”летательные аппараты”. При этом, множество условий принадлежности Fa фактически является множеством причин и сопричин, влекущих за собой выполнимость условия ”ai(Xi)Î F(Fa),если Fa ÍXi”. Для немонотонной изменяющейся во времени области А множество условий принадлежности Fa можно разбить на два подмножества:Fa1 - абсолютные причинно-следственные ограничения, определяющие объекты переменной независимо от условий ПС и Fa2 -относительные ограничения, т.е. появляющиеся причинно-следственные ограничения или ”тормозные сигналы”, нарушающие условия принадлежности ai(Xi) к A(Fa),определяемые множеством абсолютных ограничений. Например, все аппараты, имеющие крылья и мощный тяговый двигатель, обладают способностью летать. Однако, при появлении тормозного фактора - ”наличие повреждений” -все аппараты A(Fa1) теряют способность летать. Таким образом, условия принадлежности объектов ai(Xi) к множеству A(Fa) будут определяться следующим образом (Fa1 Í Xi) &(Fa2 ÇXi= Æ). Казуально-зависимая переменная называется замкнутой и обозначается A(Fa*). если Fa* = Fa1* ÈFa2* является множеством необходимых и достаточных причин и сопричин, выполнение которых влечет за собой общезначимость условий принадлежности ai(Xi)ÎA(Fa*), если (Fa1* Í Xi)&(Fa2*Ç Xi = Æ).
3. Казуально-зависимые предикаты и правила их использования для пополнения знаний
Используя казуально-зависимые переменные в качестве предикатных переменных можно определить следующие казуально-зависимые предикаты.
Определение1.Предикатная формула M(A(Fa 1* ), kj), связанная с выявлением kj свойства оъектов ПС называется казуально-зависимым предикатом, если ее предикатная переменная определена казуально-зависимой переменно А(F1*), образованной на основе причинно-следственных ограничений Fa1* свойства kj и она принимает истинное значение только в том случае, если подставляемые в нее предметные переменные и константы удовлетворяют требованиям Fa1*.
Определение2.Казуально-зависимая предикатная формула N(A(Fa2*),kj), связанная с выявлением kj свойства объектов ПС называется казуально-зависимым предикатным дополнением, если подставляемые в нее объектные переменные и константы удовлетворяют требованиям Fa2* относительных причинно-следственных ограничений Fa2* переменной A(Fa*).
Определение3.Казуально-зависимый предикат M(A(Fa1*),kj),образует причинно-следственное продолжение с дополнением N(A(Fa2*),kj),которое обозначается E(kj):N(A(Fa2*),kj)
M(A(Fa1*),kj) и принимает истинное значение только для тех предикатных переменных и констант, для которых формулы N(A(Fa2*),kj) и M(A(Fa1*),kj) являются одновременно истинными.Утверждение 1. Причинно-следственное продолжение Ej является общезначимым для всех объектов ПС, удовлетворяющих требованиям казуально-зависимой предикатной переменной A(Fa), если образующее ее множество является замкнутым Fa*.
Доказательство. Справедливость утверждения вытекает из условия необходимости и достаточности причин и сопричин Fa*, влекущих за собой общезначимость следствия
("aj(Xj)ÎA(Fa*)) [E(kj)].
Если множество условий принадлежности Fa является открытым, то причинно-следственное подолжение E(kj), образованное его основе, является только выполнимым.
Очевидно, что открытое множество Fa должно пополняться и корректироваться по мере приобретения ИС новых знаний. Корректировка составляющей Fa2* открытого множества Fa может осуществляться на основе процедур самообучения подробно изложенных в [3].
Утверждение 2. Совокупность формул R={ E(kj)}, j=1,m и правила их означивания образуют монотонную логику вывода умозаключений для произвольной предметной области A, если все образующие эти формулы множества причин и сопричин являются замкнутыми Fa*.
Доказательства. Из условия общезначимости формул
("aj(Xj)ÎA(Fa*))[E(kj)]
следует, что каждая казуально-зависимая переменная A(Fa*),j=1,m при замкнутом множестве Fa* образует монотонную область вывода умозаключений, связанных с подтверждением выполнимости свойства kj для всех объектов aj(Xj) из А при условии, что они удовлетворяют требованиям Fa*.