Смекни!
smekni.com

Проблемы функционального проектирования самотестируемых СБИС (стр. 2 из 2)

Практическая реализация метода самотестирования

Ниже приводятся два прикладных примера реализации предлагаемой концепции самотестирования.

Так реализация ГТ для программируемого тактового генератора на три входа тактирующего микропроцессорные устройства была спроектирована в виде программируемой логической матрицы (ПЛМ). Длина теста для обнаружения всех одиночных константных неисправностей оказалась равной 27 наборам. Схема ГТ ( без использования для синтеза теста СР) содержит два триггера и 17 вентилей. Если сравнить затраты на реализацию тактового генератора и ГТ в пересчете на число вентилей и учесть еще затраты на хранение теста в памяти, то получается не совсем удовлетворительное соотношение. Однако затраты на ГТ сокращаются при использовании для генерации теста СР. В этом случае ГТ реализуется в виде чисто комбинационной схемы на 7 вентилей и отношение затрат на ГТ и тактовые генератор равно примерно 13%. Преимущество ПЛМ-реализации ГТ состоит в том, что комбинационные схемы в этом случае проектируются особенно просто, хотя при этом требуется несколько большая по сравнению с обычным проектированием площадь кристалла.

Другим примером является реализация ГТ для 32-разрядного секционного процессора, который имеет 13 управляющих входов, 32 входа данных, 32 выхода и 28 триггеров. Тестовая последовательность была определена упрощенным способом путем попарно-параллельного построения тестов для отдельных секций и последующей их склейки. Длина теста оказалась равной 39. Соответствующая ПЛМ-реализация ГТ содержит один триггер, а общее число термов равно 55. Для управления ГТ используются два триггера процессора и 8 триггеров 32-разрядного СР, так как большинство секций тестируются попарно-параллельно и триггеры СР содержат одинаковую информацию. Затраты на ГТ составили около 10%.

Выше отмечалось, что при реализации СБИС по КМОП-технологии, наряду с неисправностями константного типа имеют место характерные для КМОП-схем St-open неисправности, приводящие в некоторых случаях к секвенциальным отношениям к схеме. В этом случае вместо одного тестового вектора для каждой j-й St-open неисправности необходимо синтезировать целый блок тестовых пар (x,z), причем первая пара обычно служит для инициализации, а остальные - для очувствления неисправности. Что касается алгоритма синтеза тестовой последовательности для ГТ, то он является расширением ранее приведенного алгоритма. В частности, отличие состоит в том, что в п.п.4 и 5 алгоритма множество Li+1 содержит все те состояния, которые достигаются из состояния zeLi не только за один, но и за несколько переходов, а в п.8 необходимо также учесть это обстоятельство при образовании нового множества Li. Общая оценка сложности алгоритма становится равной O(q3), возрастает и длина теста. Так, например, длина теста для упомянутого ранее тактового генератора становится равной 66 наборам, а ГТ для него содержит 17 вентилей. Похожий рост затрат наблюдается и для самотестируемой КМОП-схемы 32-разрядного секционного процессора, хотя сам метод самотестирования не зависит от технологии, что является его несомненным преимуществом.

Список литературы

1.Электроника СБИС. Проектирование микроструктур: Пер. с анг./ Под ред. Н. Айнспрука.- М.: Мир, 1989. – 256с.ил.

2.Мелихов А.Н., Родзин С.И. Проектирование генератора тестов для самотестируемых СБИС. – В трудах 12-й международной конференции: Отказоустойчивые системы и диагностика. – ЧСФР, Прага, 1989.

3.Курейчик В.М., Родзин С.И. Контролепригодное проектирование и самотестирование СБИС : проблемы и перспективы. – М.: Радио и связь, 1994. – 176с.: ил.