Смекни!
smekni.com

Кластерные системы (стр. 3 из 4)

* MPI — наиболее распространенный и производительный протокол передачи сообщений в кластерных системах, а также интерфейс программирования для создания параллельных приложений.

Сейчас существуют два способа внутреннего устройства стандартных системных сетей. Например, сеть SCI имеет топологию двух- или трехмерного тора и не требует применения коммутаторов, что уменьшает стоимость системы. Однако эта технология имеет существенные ограничения по масштабируемости.

Остальные общедоступные высокоскоростные технологии системных сетей Myrinet, QsNet, InfiniBand используют коммутируемую топологию Fat Tree. Вычислительные узлы кластера соединяются кабелями с коммутаторами нижнего уровня (leaf, или edge switches), которые в свою очередь объединяются через коммутаторы верхнего уровня (core, или spine switches). При такой топологии имеется много путей передачи сообщений между узлами, что позволяет повысить эффективность передачи сообщений благодаря распределению загрузки при использовании различных маршрутов. Кроме того, при помощи Fat Tree можно объединить практически неограниченное количество узлов, сохранив при этом хорошую масштабируемость приложений.

Задача эффективного доступа узлов к данным (например, к внешнему хранилищу) чаще всего решается с помощью вспомогательной сети (как правило, Gigabit Ethernet). Иногда для этого применяют каналы Fibre Channel (это значительно увеличивает стоимость системы) или системную сеть (например, InfiniBand в кластерах баз данных). Вспомогательная (или сервисная) сеть также отвечает за распределение задач между узлами кластера и управление работой заданий. Она используется для файлового обмена, сетевой загрузки ОС узлов и управления узлами на уровне ОС, в том числе мониторинга температурного режима и других параметров работы узлов. Сервисная сеть применяется и для так называемого управления узлами out-of-band, т. е. без участия операционной системы. К нему относятся «плавное», последовательное включение и выключение узлов вр избежание большого скачка напряжения, аппаратный сброс узла и доступ к его консоли на всех этапах работы, что позволяет диагностировать поломки в недоступных узлах, изменять настройки ОС и др. Ведущие изготовители суперкомпьютеров, такие, как IBM, SUN, HP, вводят в состав узла специальные платы, позволяющие осуществлять управление out-of-band, которые в пересчете на весь кластер довольно дороги. К счастью, есть гораздо более доступное российское решение с аналогичной функциональностью — сеть ServNet, разработанная в Институте программных систем РАН и успешно применяемая в отечественных кластерных системах, в частности в кластерах «СКИФ». Компактная плата ServNet (всего 66х33 мм) легко встраивается в вычислительный узел и позволяет, кроме всего вышеперечисленного, изменять параметры BIOS узла, выбирать загружаемую ОС, изменять параметры загрузки ядра Linux, контролировать критические сообщения ОС и проводить «посмертное» чтение (из энергонезависимой памяти платы ServNET) нескольких последних сообщений ОС.

Суперкомпьютеры — это всегда очень большие мощности. В сложившейся ситуации уже невозможно рассматривать высокопроизводительные вычислительные системы отдельно от систем их размещения, охлаждения и электропитания. Например, «СКИФ К-1000» потребляет более 89 кВт, и практически все уходит в тепло. Такой мощности было бы достаточно для обогрева небольшого дома, но все 288 узлов формфактора 1U стоят в восьми стойках, и без продуманного теплового дизайна не обойтись. В первых суперкомпьютерах использовалось жидкостное охлаждение, но такие охладительные системы нередко выходили из строя. В современных суперкомпьютерах применяют воздушное охлаждение, и необходимый температурный режим обеспечивается двумя факторами. Во-первых, продуманным тепловым дизайном вычислительного узла: стандартные шасси необходимо модернизировать для того, чтобы воздушный поток, создаваемый внутренними вентиляторами, максимально эффективно охлаждал процессоры. Во-вторых, поддержанием рабочей температуры в помещении: горячий воздух должен быть либо отведен от узлов и кондиционирован, либо направлен за пределы помещения.

Оптимизация энергопотребления — не менее серьезная задача. По мнению мировых экспертов, при современных темпах роста производительности систем и сохранении характеристик их энергопотребления уже к 2010 г. самые мощные суперкомпьютеры будут потреблять столько энергии, что обеспечить ее подачу и отвод тепла будет невозможно. Однако проблема обеспечения бесперебойного питания существует и для систем со средней производительностью, и каждый изготовитель решает ее по-своему.

Классификация кластерных систем

Кластерные системы могут использовать самые разные платформы и типы интерконнектов л, как правило, классифицируются не по набору комплектующих, а по областям применения. Выделяют четыре типа кластерных систем: вычислительные кластеры, кластеры баз данных, отказоустойчивые кластеры и кластеры для распределения загрузки. Самая многочисленная группа — вычислительные кластеры. Она может быть разбита на подгруппы; правда, классификации внутри этой группы подлежат уже не собственно вычислительные машины, а готовые программно-аппаратные кластерные решения. Такие системы «под ключ» имеют предустановленное прикладное ПО, необходимое заказчику для решения его задач. Решения, оптимизированные для разных приложений, различаются подбором компонентов, обеспечивающим наиболее производительную работу именно этих приложений при наилучшем соотношении цена/качество.

Основные типы готовых решений в мировой практике:

промышленные кластеры для инженерных задач;

кластеры для нефте- и газодобывающей промышленности;

кластеры для исследований в области «наук о жизни», или life sciences (поиск новых лекарств, генетика, молекулярное моделирование, биоинформатика);

кластеры для стратегических исследований (исследования погоды и климата, ядерная физика и физика частиц, космические исследования, оборонные программы);

кластеры для индустрии развлечений (компьютерная графика и спецэффекты, компьютерные онлайновые игры);

грид-решения*;

кластеры для высокопроизводительных вычислений в различных областях науки и образования.

Кластеры баз данных появились недавно. Эти системы работают с параллельными версиями баз данных и используются в крупных организациях для работы CRM-и ERP-систем, а также трапзакционных баз данных. Сегодня эти системы — серьезный конкурент традиционным серверам с общей памятью благодаря лучшему соотношению цена/производительность, масштабируемости и отказоустойчивости.

Отказоустойчивые кластеры строят для того, чтобы наилучшим образом обеспечить надежность работы критически важных приложений. Работа приложения дублируется на разных узлах, и в случае ошибки на одном из них приложение продолжает работать или автоматически перезапускается на другом. Такие кластеры не бывают большими, и пользователи часто строят их сами. Кластерные технологии также используются для распределения большого потока запросов по многим серверам. Такие решения часто применяются для поддержки Web-узлов с динамическим содержимым, постоянно обращающихся к базам данных, например, поисковых систем. В зависимости от размеров сервиса кластеры распределения загрузки могут иметь достаточно большое количество узлов.

*Грид (GRID) — перспективное направление развития ИТ технологий. Хотя оно пока не воплощено в индустриальных стандартах, все страны — лидеры ИТ-рынка — имеют государственные программы разработки грид-технологий. Цель этих программ;

интеграция вычислительных мощностей — интеграция разнородных вычислительных систем в единое пространство с динамическим распределением ресурсов между приложениями;

интеграция емкостей хранилищ — нечто подобное территориально распределенным RAID-системам;

интеграция источников данных — например, интеграция в единую виртуальную базу разнородных баз данных, распределенных территориально, реализованных на разных аппаратных платформах и принципах.

Термин «грид» создан по аналогии с понятием «power grid» — система, интегрирующая генерирующие мощности электрических сетей в единое «хранилище» энергии, откуда она перераспределяется вне зависимости от ее источника. Внедрение таких технологий в сфере высокопроизводительных вычислений позволит кардинально упростить доступ к вычислительным ресурсам и сделать их использование на порядок более эффективным. Помимо интеграции вычислительных ресурсов грид-технологии позволят интегрировать разнородные емкости хранения информации и базы данных для создания глобального информационного пространства. Сегодня ясно, что грид-системы получат большое распространение в научных и академических кругах, т. е. в условиях относительной открытости информационных ресурсов. В коммерческом сегменте, где очень остро стоит вопрос обеспечения безопасности обмена информацией и защиты интеллектуальной собственности, такие системы, по-видимому, будут востребованы в меньшей степени.

Специализированное ПО

Работа кластерных систем обеспечивается четырьмя видами специализированных приложений, как то: операционные системы (как правило, Linux), средства коммуникации (для вычислительных кластеров это обычно библиотека MPI), средства разработки параллельных приложений и ПО для администрирования кластеров.