Растительные жиры обычно называют маслами. Их добывают из семян и мякоти плодов различных растений. Они отличаются высоким содержанием олеиновой и других непредельных кислот и содержат лишь незначительное количество стеариновой и пальмитиновой кислот (подсолнечное, оливковое, хлопковое, льняное и др. масла). Лишь в некоторых растительных жирах преобладают предельные кислоты, и они являются твердыми веществами (кокосовое масло, масло какао и др.). Как уже было указано, наличие в растительных маслах непредельных и особенно незаменимых полиненасыщенных кислот придает им особую пищевую ценность. Некоторые растительные масла (льняное, конопляное, хлопковое), отличающиеся высоким содержанием непредельных кислот с двумя или с тремя двойными связями, а именно линолевой и линоленовой кислот, проявляют склонность на воздухе, особенно в тонких слоях, окисляться и высыхать, образуя пленки. Также масла называют высыхающими маслами. Высыхающие масла обычно используют для приготовления олиф – технических масел для разведения масленых красок. Для этого натуральные масла, богатые полиненасыщенными кислотами, варят и вводят в них в качестве добавок, ускоряющих высыхание, т.н. сиккативы (окислы свинца, соли марганца).
Гидрогенизация жиров
Жидкие жиры и масла путем каталитического присоединения водорода по месту двойных связей входящих в их состав непредельных кислот могут быть превращены в твердые жиры. Это метод называют гидрогенизацией (отверждением) жиров. Впервые он был разработан в 1906г. русским ученым С.А. Фокиным, а в 1909г. им же осуществлен в промышленном масштабе.
Гидрогенизацию ведут в присутствии мелкораздробленного металлического никеля (катализатор) при 160-240 оС, пропуская в нагретое масло под давлением до 3 атм. очищенный газообразный водород. При этом непредельные триглицериды превращаются в предельные. Например:
9 10
СН2—О—С—(СН2)7—СН=СН—(СН2)7—СН3I О 9 10 + 3 Н
СН —О—С—(СН2)7—СН=СН—(СН2)7—СН3 ¾¾®I О 9 10 Ni
СН2—О—С—(СН2)7—СН=СН—(СН2)7—СН3О триолеин (жидкий)
9 10
СН2—О—С—(СН2)7—СН2—СН2—(СН2)7—СН3I О 9 10
® СН —О—С—(СН2)7—СН2—СН2—(СН2)7—СН3I О 9 10
СН2—О—С—(СН2)7—СН2—СН2—(СН2)7—СН3О тристеарин (твердый)
Твердый жир, получаемый путем гидрогенизации жидких растительных масел или жиров морских животных и рыб, называется саломасом. Его широко применяют для производства искусственного твердого пищевого жира – маргарина, а также в мыловарении и др. Различные сорта маргарина получают, смешивая саломас с молоком, в некоторых случаях – с яичным желтком. Получается продукт, по внешнему виду напоминающий сливочное масло, приятный запах последнего достигается введением в маргарин специальных ароматизаторов – сложных композиций различных веществ, непременной составной частью которых является диацетил (СН3—С—С—СН3 - жидкость желтого цвета, содержится в коровьем масле.) II II
О О
Гидрогенизация жиров имеет очень большое практическое значение. Потребность в твердых жирах в народном хозяйстве огромна. Из них получают наиболее ценные сорта мыл. Они удобнее для употребления в пищу. Кроме того, твердые жиры, поскольку они не содержат двойных связей (или содержат их значительно меньше, чем жидкие жиры), труднее окисляются и поэтому менее подвержены порче (прогорканию) при хранении. Применение гидрогенизации жидких жиров и масел дает возможность восполнить недостаток твердых жиров.Реакции, характеризующие не насыщенность жиров
Раствор KMnO4 при встряхивании с маслами теряет фиолетовую окраску, при этом окисляются по месту двойных связей входящие в состав масел непредельные кислоты (подобно окислению этиленовых углеводородов) и восстанавливается Mn7+. Твердые жиры, содержащие мало непредельных глицеридов, обесцвечивают раствор KМnO4 в значительно меньшей мере.
Окрашенные в бурый цвет растворы иода и брома обесцвечиваются при взаимодействии с входящими в состав жиров непредельными кислотами в результате присоединения галогенов по двойным связям. Например:
9 10 I 2 9 10
-СО-(СН2)7-СН=СН-(СН2)7-СН3 ¾® -СО-(СН2)7-СН-СН-(СН2)7-СН3
остаток олеиновой к-ты I I остаток 9,10-иод-
I I стеариновой к-ты
Эта реакция не только качественно, но и количественно характеризует не насыщенность (непредельность) жиров. Так, представление о содержании непредельных кислот в масле дает иодное число – количество граммов иода, которое может присоединяться (при соблюдении стандартных условий) к непредельным кислотам в 100г. жиров. Для большинства жиров и растительных масел иодное число 30-150, для сливочного масла - 30, для говяжьего сала - 32-50, для богатого непредельной олеиновой кислотой оливкового («прованского») масла 75-88. Высокие иодные числа у богатых полиненасыщенных кислотами высыхающих масел (льняное 170-180, конопляное 140-165).
Для характеристики содержания олеиновой кислоты применяют элаидиновую пробу: масло обрабатывают азотистой кислотой, при этом жидкие глицериды олеиновой кислоты (цис-изомер) превращаются в твердые глицериды элаидиновой кислоты (транс-изомер). Так, жидкое оливковое масло, богатое олеиновой кислотой (до 80 %), при действии азотистой кислоты затвердевают в плотную массу.
Все жиры являются горючими веществами. При горении их выделяется большое количество тепла: 1г жира при горении дает 9300кал.
Масла и некоторые животные жиры склонны к самовозгоранию при определенных условиях. Для оценки склонности масел к самовозгоранию необходимо знать количество ненасыщенных связей, что оценивают иодным числом. Чем больше иодное число, тем больше в масле непредельных соединений, а следовательно, оно будет более склонно к самовозгоранию. Практика показывает, что способны самовозгораться масла с иодным числом выше 50. Ниже приведены иодные числа масел и жиров. Масла: льняное (175-192); подсолнечное (122-142), конопляное (150-170), соевое (114-139), коровье (25-47), жиры: рыбий (165-185), тюлений (122-162), моржевый (168), дельфиновый (130-140).
Физические свойства и показатели пожарной опасности насыщенных карбоновых кислот
Кислоты | Плот-ность г/см3 | Температура, оС | Температур-ные пределы воспламенения, оС | |||
кипения | вспышки | самовоспламенения | нижний | верхний | ||
Муравьиная (НСООН) | 1,220 | 100,7 | 60 | 504 | ||
Уксусная (СН3СООН) | 1,049 | 118,1 | 38 | 454 | 35 | 76 |
Пропионовая (СН3СН2СООН) | 0,998 | 141,1 | 54 | 402 | 45 | 83 |
Масляная СН3(СН2)2СООН | 0,959 | 163,5 | 72 | 385 | 62 | 96 |
Физические свойства и показатели пожарной опасности ненасыщенных карбоновых кислот
Кислоты | Плотность,г/см3 | Температура, оС | Иодное число | ||
кипения | вспышки | самовоспламенения | |||
Акриловая (С2Н3СООН) | 1,062 | 1,41 | 48 | 440 | |
Олеиновая (С17Н33СООН) | 0,891 | 286 | 184 | 280 | 89,96 |
Линолевая (С17Н31СООН) | 0,900 | 229 | - | - | 181,20 |
Линоленовая (С17Н29СООН) | 0,910 | 230 | - | - | 273,80 |
Перекиси и гидроперекиси
Органическими перекисями называют производные перекиси водорода Н-О-О-Н, строение которых можно представить формулой R-O-O-R. Производные перекиси водорода образованные в результате замещения на углеводородный радикал только одного атома водорода, называются гидроперекисями, они имеют строение R-O-O-H. В диэтиловом эфире (CH3-CH2-O-CH2-CH3) образуется смесь перекисных соединений, среди них, например, перекись оксиэтила
СН3—СН—О—О—СН—СН3
I I
ОН ОН
Для разложения перекисей долго стоявших эфир перед перегонкой рекомендуется обработать раствором щелочи или какого-нибудь восстановителя (Na2SO3 – сульфит натрия).
Чтобы предотвратить образование перекисей, эфир надо хранить в хорошо закупоренных сосудах из темного стекла.
Перекисные соединения при нагревании могут разлагаться со взрывом.
Пероксикарбоновые кислоты и ацилпероксиды
Получают ацилированием пероксида водорода, либо окислением альдегидов: O O