Было установлено, что степень перехода диметилгидразона в органическую фазу при использовании для целей экстракции гексана не превышает 25%, в случае хлороформа эта величина достигает 96% при 2,5-кратном концентрировании. Максимум поглощения экстракта диметилгидразона коричного альдегида также наблюдается при 400 нм, как и в случае реакционной системы: этиленгликоль – уксусная кислота, что позволяет фотометрировать его в аналогичных условиях и понизить минимально определяемую концентрацию с 0,05 до 0,02 мкг/мл. Точность анализа определяли методом «введено-найдено», погрешность определения не превышала 10%. Также установлено, что содержание воды в растворителях не должно превышать 5%, что обусловлено помутнением аналитической системы из-за низкой растворимости в воде альдегида.
Флуориметрическое определение
несимметричного диметилгидразина
Учитывая тот факт, что диметилгидразоны ароматических альдегидов имеют в своем составе флуоресцирующие группы, были проведены исследования по созданию методики определения НДМГ по сигналу флуоресценции.
Оптимизацию детектирования по интенсивности аналитического сигнала проводили на флуориметре «Флюорат-02-1». Установлено, что для коричного альдегида лучшее соотношение поглощения и флуоресценции достигается со светофильтрами с максимумами при 360 и 530 нм для каналов возбуждения и регистрации соответственно, для п- и м‑нитробензальдегида – при 350 и 430 нм, для о-изомера – при 350 и 430 нм, но с более широкой полосой пропускания.
При оптимизации величины избытка реагента установили, что для коричного альдегида достаточным является 500-кратный, 1000-кратный для о- и п-нитробензальдегидов, 2000-кратный для мета-изомера и 5-фенилпентадиен-2,4-аля. В полученных условиях были сняты градуировочные зависимости интенсивности флуоресценции диметилгидразонов от концентрации НДМГ.
Диапазоны линейности составляют 0,05–0,80; 0,02–0,20; 0,01–0,10 мкг/мл в случае применения о-, м- и п‑нитробензальдегида соответственно. При использовании 5‑фенилпентадиен-2,4-аля линейность сохраняется при концентрациях определяемого вещества 0,5–5,0 мкг/мл, а в случае коричного альдегида 0,001–0,010 мкг/мл. Для увеличения чувствительности определения НДМГ был применен метод экстракции диметилгидразона коричного альдегида из водной среды хлороформом, позволяющий понизить значение минимально определяемой концентрации до 0,0004 мкг/мл. При этом было установлено, что смена растворителя не оказывает влияния не только на положение максимума поглощения диметилгидразона, но и на длину волны регистрации его флуоресценции.
Для целей дальнейших исследований были построены кинетические кривые зависимости интенсивности флуоресценции от продолжительности нагрева при 20, 40, 60 и 80оС. Вид полученных кривых для 5‑фенилпентадиен-2,4-аля показан на рис. 5.
По данным кинетических кривых были построены зависимости времени реакций между НДМГ и ароматическими альдегидами от температуры их проведения, показанные на рис.6.
Как видно, максимальная скорость реакции деривации НДМГ альдегидами обеспечивается нагреванием при 80оС.
Рисунок 5 – Зависимость величины аналитического сигнала
от времени реакции с 5-фенилпентадиен-2,4-алем при 100 (1), 80 (2), 60 (3) и 20оС (4)
Рисунок 6 – Зависимость времени реакции от температуры
с о-нитробензальдегидом (1), м-нитробензальдегидом (2),
п-нитробензальдегидом (3), коричным альдегидом (4)
и 5-фенилпентадиен-2,4-алем (5)
Изучение кинетических параметров флуоресценции диметилгидразонов
Для объяснения закономерностей процессов излучения диметилгидразонов в зависимости от структуры и свойств применяемых реагентов на основе данных флуориметричекских измерений использовали кинетическую схему Штерна-Фольмера, описывающую фотофизический процесс флуоресценции и позволяющую рассчитать константу флуоресценции (к2), константу дезактивации (к3) и константу диссоциации флуоресцирующего вещества (к4).
В соответствии с данной схемой перечисленные константы являются членами уравнения (1):
Ia/Iфл= к3/к2*[АВ]+к4/к2+1, (1)
где Ia – интенсивность поглощенного излучения, Iфл – интенсивность флуоресценции, [АВ] – концентрация флуоресцирующего вещества.
Величина Ia при малой толщине поглощающего слоя является постоянной и не зависит от концентрации, то есть считается, что падающее излучение поглощается полностью. Графическая зависимость, построенная в координатах 1/Iфл – Cндмг, линейна в диапазоне концентраций НДМГ градуировочной кривой. Константа к2 соответствует тангенсу угла наклона прямолинейного участка кинетической кривой при температуре 20оС, соответствующей условиям измерения аналитического сигнала. Остальные константы рассчитываются из коэффициентов уравнения регрессии (1).
Значения энергии активации реакции конденсации НДМГ с ароматическими альдегидами определяли графически из уравнений, описывающих кривые, построенные по логарифмическому выражению уравнения Аррениуса:
ln1/τ= -Еа/RT+lnA, (2)
где τ – время реакции при данной температуре, Т – температура, R – универсальная газовая постоянная, Еа – энергия активации, А – предэкспотенциальный множитель.
Вид зависимостей ln1/τ= f(1/T) показан на рис. 7. Соответствующие значения рассчитанных энергий активации реакций НДМГ с альдегидами представлены в табл. 1.
Рисунок 7 – Зависимость ln1/τ от 1/Т с о-нитробензальдегидом (1),
коричным альдегидом (2), 5-фенилпентадиен-2,4-алем (3),
п-нитробензальдегидом (4) и м-нитробензальдегидом (5)
Таблица 1 – Значения констант фотофизических процессов
диметилгидразонов и энергий активации реакций
взаимодействия НДМГ с ароматическими
альдегидами
Альдегид | к2 | к3 | к4 | Еа, кДж/моль | Уравнениярегрессии |
о-нитробен-зальдегид | 2,3*10–4 | -0,062 | 7,20*10–4 | 15,6 | у = -0,078x+0,105 |
м-нитробен-зальдегид | 3,1*10–4 | -0,016 | 7,38*10–4 | 15,5 | y = -2,692x+2,206 |
п-нитробен-зальдегид | 4,0*10–4 | -0,051 | 7,08*10–4 | 14,8 | y = -10,889x+1,33 |
Коричный альдегид | 8,0*10–4 | -0,089 | 2,14*10–4 | 13,7 | y = -126,65x+2,78 |
5-фенилпен-тадиен-2,4-аль | 2,7*10–4 | -0,019 | 15,93*10–4 | 16,1 | y = -0,707+6,909 |
Из полученных значений видно, что коричный альдегид является более перспективным реагентом для определения НДМГ флуориметрическим методом, так как его диметилгидразон обладает наибольшими значениями констант флуоресценции, наименьшим констант дезактивации, диссоциации и энергии активации. Полученные значения также объясняют столь высокую чувствительность определения и высокую скорость деривации НДМГ коричным альдегидом по сравнению с остальными реагентами.
Были выявлены закономерности влияния структуры (расположение заместителя в бензольном кольце относительно карбонильной группы, наличия эффекта сопряжения в молекуле, количество непредельных составляющих в углеродном радикале) ароматического альдегида на метрологические характеристики определения НДМГ в виде диметилгидразона. Для достижения наилучших результатов анализа необходимо, чтобы заместитель в ароматическом кольце был максимально удален от альдегидной группы; наличие двойных связей неоднозначно влияет на аналитические характеристики определения НДМГ: одна непредельная углерод-углеродная связь улучшает метрологические параметры анализа, увеличение их количества, напротив, уменьшает чувствительность определения и увеличивает время проведения анализа.
ТСХ-хроматографическое определение НДМГ в виде диметилгидразона коричного альдегида является малоперспективным при использовании в качестве неподвижной фазы силикагеля и проявителя – раствора перманганата калия из-за низкой чувствительности метода в данных условиях. Газохроматографический метод анализа с детектором ионизации пламени также малоэффективен из-за низкой чувствительности самого детектора к диметилгидразонам ароматических альдегидов.
Схема анализа природных объектов на содержание НДМГ
в виде диметилгидразона коричного альдегида
Схемы анализа различных объектов окружающей среды на содержание НДМГ формировались с учетом специфики анализируемого объекта.
При анализе природных и сточных вод на содержание НДМГ пробоотбор и пробоподготовка осуществляется общепринятыми методами (рис. 8). В случае, когда концентрация определяемого вещества в пробе находится на уровне ПДК (0,02 мкг/мл) и ниже, подготовка пробы к анализу включает в себя осветление ее аликвотной части и фильтрацию с последующим экстракционно-флуориметрическим определением, либо процесс пробоподготовки может заключаться в отгонке НДМГ в раствор реагента из пробы после внесения в нее соответствующих реагентов с дальнейшим флуориметрическим определением. При более высоких содержаниях НДМГ в воде (свыше 0,05 мкг/мл) процесс пробоподготовки заключается в его отгонке и поглощении раствором реагента с последующим фотометрическим определением или фильтрации осветленной пробы с последующим экстракционно-фотометрическим определением.
Рисунок 8 – Схема анализа природных и сточных вод
на содержание НДМГ
При определении НДМГ в природной воде экстракционно-фотометрическим и экстракционно-флуориметрическим методами процесс пробоподготовки заключается в обесцвечивании пробы оксидом кальция и 70%-ным раствором ортофосфорной кислоты, последующей фильтрации полученной смеси, деривации НДМГ коричным альдегидом в отобранной аликвоте фильтрата при нагревании и экстрагировании образовавшегося диметилгидразона хлороформом. Полученный экстракт фотометрируют в условиях, описанных выше. Для флуориметрического определения отбирают часть фильтрата, разбавляют ее в 50 раз, в полученном растворе проводят реакцию конденсации НДМГ с коричным альдегидом, экстрагируют образовавшийся диметилгидразон хлороформом и полученный экстракт флуориметрируют. Концентрацию НДМГ в органической фазе определяют по соответствующим градуировочным графикам. Расчет концентрации определяемого вещества в пробе проводят по формуле (3):