Смекни!
smekni.com

Анализ и оценка качества некоторых молокосодержащих продуктов (стр. 2 из 4)

С целью маскирования и ослабления специфического сывороточного запаха и извлечения пищевых компонентов из листьев стевии нами впервые применено экстрагирование ультрафильтратом творожной сыворотки. После экстрагирования пищевых компонентов стевии проводили двухступенчатую очистку экстракта путем пропускания через колонку с активированным углем, затем через колонки с катионитом КУ-2 и анионитом АВ-17.

В экстракте определяли дитерпеновые гликозиды, витамины – В1, В2, Е (обращенно-фазовая ВЭЖХ), аминокислоты (капиллярный электрофорез), флавоноиды, свободные сахара (абсорбционная спектроскопия), макроэлементы – Са, Р (титриметрия).

Глава 3 посвящена оптимизации условий микровзвешивания паров равновесных газовых фаз легколетучих ароматобразующих веществ творожной сыворотки.

В газовой фазе сыворотки методом газовой хроматографии идентифицированы масляная, миристиновая, миристолевая, пальмитиновая, стеариновая и олеиновая кислоты, а также ацетон, метилэтилкетон, этанол, бутанол-1, бутанол-2, ацетальдегид и этилацетат.

Содержание идентифицированных соединений определяли методом нормировки (табл. 1). Наибольшим содержанием в ряду жирных кислот характеризуется масляная кислота, среди аромат-образующих веществ других классов – ацетальдегид и этилацетат (табл. 1). Эти соединения отличаются наиболее низкими пороговыми концентрациями среди идентифицированных ароматобразующих веществ сыворотки. Полученные данные позволяют заключить, что наибольшее влияние на формирование специфического сывороточного запаха оказывают масляная кислота, ацет-альдегид и этилацетат.

Оптимизированы массы пленок модификаторов электродов пьезокварцевых резонаторов при сорбции паров равновесных газовых фаз ароматобразующих веществ, оптимальный интервал масс пленок 15 – 20 мкг.

В идентичных условиях (температура в ячейке детектирования 20 ± 1 оС, масса пленки сорбента на электродах mпл = 15 – 20 мкг, объем вводимой пробы 2 см3, концентрация ароматобразующих веществ

Таблица 1

Определение ароматобразующих веществ в сыворотке

Компоненты Время удержива-ния,мин – с Площадь пика на хромато-грамме, мВ×с Сигнал детектора, мВ Концент-рация, % мас.
кислоты:маслянаямиристиноваямиристолеваяпальмитиноваястеариноваяолеиновая 3 – 3112 – 1212 – 4514 – 1316 – 5117 – 18 1063,078,737,5270,1101,1206,1 989,936,314,697,127,851,4 60,54,52,115,45,811,7
другие вещества:ацетальдегидацетонэтанолэтилацетатметилэтилкетонбутанол-1бутанол-2 0 – 420 – 541 – 051 – 291 – 382 – 052 – 16 632,9150,790,4703,475,6201,9117,8 355,684,750,8395,233,367,839,5 32,17,64,635,73,810,26,0

10 мг/м3) оценена чувствительность пленок 15 модификаторов элек-

тродов пьезосенсоров (Sm, Гц∙м3/моль) по отношению к 8 идентифицированным легколетучим соединениям. Полученные результаты иллюстрируют гистограммы мольной чувствительности некоторых модификаторов к ароматобразующим веществам (рис. 1).

Изученные модификаторы электродов пьезокварцевых резонаторов характеризуются перекрестной чувствительностью к

парам ароматобразующих веществ. Высокие аналитические сиг-

налы (ΔFc, Гц) и максимальная мольная чувствительность при экспонировании модифицированных пьезокварцевых резонаторов в парах равновесной газовой фазы масляной кислоты характерны для β-аланина; в парах ацетальдегида – для tween-40; этилацетата, ацетона, метилэтилкетона, бутанола-1 и бутанола-2 – для ПЭГСб; этанола – для ТХ-100. Кроме того, повышенное сорбционное сродство к этилацетату и кетонам проявляют пленки ПЭГФ, ТБПЭ; масляной кислоте – ПЭГ-2000, ТХ-100; ацетальдегиду – β-аланин, ТХ-100, ПВП; спиртам – ТХ-100, ПЭГ-2000, ПЭГСб.


Рис. 1. Гистограммы мольной чувствительности b-аланина (а), tween-40 (б),

ПЭГСб (в), ТБПЭ (г) к парам этанола [1], бутанола-1 [2], бутанола-2 [3],

масляной кислоты [4], ацетальдегида [5], ацетона [6], метилэтилкетона [7],

этилацетата [8].

Изучена кинетика сорбции – десорбции ароматобразующих веществ на тонких пленках модификаторов пьезосенсоров. В оптимальных условиях при постоянных температуре и концентрации аналитов в равновесной газовой фазе построены выходные кривые сорбции ароматобразующих веществ на пленках модификаторов электродов пьезокварцевых резонаторов (рис. 2).

Сорбция, как правило, характеризуется высокой скоростью в первые несколько секунд. После достижения максимального аналитического сигнала для систем ацетальдегид – пленка модификатора, отличающихся максимальной эффективностью сорбции


Рис. 2. Выходные кривые сорбции масляной кислоты [1], ацетальдегида

[2], этилацетата [3], ацетона [4], метилэтилкетона [5], этанола [6], бутанола-1 [7], бутанола-2 [8] на пленках β-аланин (а) и ПЭГСб (б).

(tween-40, β-аланин) (рис. 2а), отмечена высокая скорость десорбции. С пленок других полярных и среднеполярных модификаторов скорость самопроизвольной десорбции значительно ниже (рис. 2б). Высокая скорость самопроизвольной десорбции после достижения максимального аналитического сигнала характерна также для системы масляная кислота – β-аланин (рис. 2а). Для других ароматобразующих соединений после достижения максимального аналитического сигнала отклик пьезосенсора изменяется незначительно (рис. 2).

По выходным кривым устанавливали время максимальной сорбции ароматобразующих веществ на пленках модификаторов электродов пьезокварцевого резонатора. Наибольшая продолжительность сорбции газовой фазы спиртов, этилацетата и кетонов зафиксирована на пленках полярных (ПВП, ПЭГ-2000) и слабополярных (ПС) сорбентов; для ацетальдегида и масляной кислоты – на пленках ПВП и ПС. Минимальным временем сорбции характеризуется сквалан. Для систем ароматобразующее вещество – пленка модификатора, отличающихся наибольшей эффективностью сорбции (например, ацетальдегид – tween-40, β-аланин) сорбция интенсивна в начальный момент времени, максимальный аналитический сигнал устанавливается через 5 – 10 с сорбции (рис. 2).

Полное восстановление начальной частоты модифицированного пьезокварцевого резонатора для всех изученных систем происходит после регенерации пленки сорбента осушенным лабораторным воздухом (принудительная десорбция). Это доказывает обратимый характер взаимодействий паров равновесных газовых фаз ароматобразующих веществ с пленками сорбентов на электродах, обусловленный силами физической сорбции.

При формировании мультисенсорной системы для тестирования многокомпонентной смеси ароматобразующих веществ сыворотки модификаторы выбирали с учетом наибольшей чувствительности к индивидуальным ароматобразующим веществам, стабильности нулевого сигнала и воспроизводимости откликов пьезосенсоров. Надежная воспроизводимость аналитических сигналов пьезосенсоров при их экспонировании в парах ароматобразующих веществ характерна для всех изученных систем аналит – пленка модификатора, погрешность определения 2 – 10 %. Исключение составляют пьезосенсоры, модифицированные растворами сквалана, бис(2-цианэтилового) эфира и ПЭГФ, погрешность определения более 15 %. В качестве модификаторов электродов пьезокварцевых резонаторов применяли ПЭГ-2000 [8] и его эфиры (ПЭГСб [2], ПЭГА [5], ПЭГС [1]), tween-40 [4], ТБПЭ [6], ТХ-100 [3], β-аланин [9], а также апиезон-L [7]. Цифры в скобках указывают последовательность расположения сенсоров в мультисенсорной ячейке детектирования. Кинетические параметры сорбции ароматобразующих веществ на пленках модификаторов электродов пьезокварцевых резонаторов позволили установить время фиксирования интегрального аналитического сигнала датчиков мультисенсорной системы, оптимальный интервал регистрации откликов пьезосенсоров – 5 – 10 с сорбции.

Глава 4 посвящена анализу пищевых компонентов экстракта стевии. Получена информация о факторах, влияющих на экстрагирование пищевых компонентов из листьев стевии, построена математическая модель процесса, оптимизированы условия экстрагирования, проведен анализ пищевых компонентов экстракта.

В качестве основных факторов, влияющих на процесс экстрагирования пищевых компонентов из листьев стевии, изучены: X1 – температура, 0С; Х2 – продолжительность экстрагирования, мин; Х3 – соотношение объемов твердой (высушенные и измельченные листья стевии) и жидкой (ультрафильтрат сыворотки) фаз; Х4 – рН экстрагента.

Все факторы совместимы и некоррелируемы между собой. Критерий оценки оптимизации процесса экстрагирования пищевых компонентов из листьев стевии – общее содержание сухих веществ в экстракте (Y). Пределы изменения влияющих факторов приведены в табл. 2.