Как устроена наука биология? Можно представить ее как слоеный пирог. Ее можно разрезать на куски, соответствующие объектам изучения (бактерии, простейшие, растения, животные, человек). В каждом куске будут слои, соответствующие уровню изучения: молекулярная биология, биохимия, физиология, анатомия, генетика и т.д. до экологии. Биологический подход определяется не тем, что мы изучаем (объект изучения), а методами и концепциями, используемыми для изучения наших объектов.
Напомним, что на предыдущих лекциях мы говорили, об устройстве молекул, из которых состоят живые организмы, об основных молекулярных процессах и о биополимерах. Кратко повторим строение биополимеров. Биополимеры состоят из мономерных звеньев, которые состоят из углерода, водорода, кислорода и т.д. (см. схему ниже).
Они, объединяясь в последовательности, линейные или разветвленные, образуют функционирующие в клетке биополимеры. И функции молекул лежат в основе жизнедеятельности клетки.
БИОПОЛИМЕРЫ
Нуклеиновые кислоты | C, H, N, O, P |
Белки | C, H, N, O, S |
Углеводы | C, H, O |
Липиды | C, H, O |
Изучение химической структуры веществ, составляющих живую клетку, было начато еще в 19 веке, но структура и функции ДНК, РНК, белков были установлены в 20 веке. За каждым открытием стоит работа многих ученых. Рассмотрим в качестве примера как были открыты нуклеиновые кислоты, как их изучали, установили их функции.
В 1868 году Фридрих Мишер в ядрах клеток обнаружил фосфорсодержащее вещество, названное им нуклеином (от слова нуклеус – ядро). Он соскабливал с гнойных бинтов клетки, в которых было много лейкоцитов, и из них выделил это вещество.
Затем, в 1889 году, удалось определить, что в состав нуклеина входит нуклеиновая кислота и белок. Этим занимался Рихард Альтман. Появился термин "нуклеиновая кислота". Затем все азотистые основания были проанализированы, их состав и структура была установлена химиками. Предполагалось, что структура ДНК выглядела следующим образом: ДНК состоит из того, что мы сейчас называем нуклеотидами, А, Т, Г, Ц; их там четыре штуки, они вчетвером образуют колечко, которое находится в ядре. В начале двадцатого века ДНК выделяли из тканей тимуса, а РНК удалось выделить из ядер клеток проростков пшеницы. Поэтому ДНК считали животной нуклеиновой кислотой (называли тимонуклеиновая кислота), а РНК – растительной. Считали, что была найдена биохимическая особенность, отличающая клетки животных и растений.
Затем в 1938 году был проведен рентгеноструктурный анализ ДНК. В частности, установили, что расстояние между нуклеотидами в ДНК равно 3,4 Å. Кроме того, показали, что нуклеотиды взаимодействуют друг с другом, и что при этом азотистые основания уложены стопками . Это называется стекинг-взаимодействием (взаимодействие плоских гидрофобных поверхностей нуклеотидов). Это открытие принадлежит Уильяму Астбюри и Флорину Беллу
В середине века было показано, что ДНК и РНК являются компонентами всех клеток. Кроме того, установили, что ДНК находится в ядре, РНК - в ядре и в цитоплазме.
В 1953 году Эрвин Чаргафф установил следующие закономерности (правило Чаргаффа): количество аденина равно количеству тимина, а количество гуанина равно количеству цитозина (А = Т, Г = Ц). Это послужило отправной точкой в установлении структуры двойной спирали Уотсоном и Криком.
Соотношение Г-Ц и А-Т пар варьируется от организма к организму, но постоянно для каждого вида.( (Г+Ц)/(А+Т)=К - коэффициент специфичности). Сейчас существует выражение "Г-Ц богатая ДНК". Вы помните, что между гуанином и цитозином существует три водородные связи, и их труднее разорвать, чем те две, которые существуют между аденином и тимином. Г-Ц богатые ДНК труднее плавятся.
В середине века было установлено, что ДНК является носителем наследственности. В начале века считалось, что именно белки, как вещества, имеющие более сложную структуру, передают наследственную информацию (эту гипотезу выдвинул наш соотечественник Николай Кольцов). Два эксперимента легли в основу того мнения, что именно ДНК являются носителем наследственности.
В 1944 году Эвери, Маклеод и Маккарти показали, что, если выделить ДНК из штаммов капсульного пневмококка (у пневмококка есть разные штаммы: образующие и не образующие защитную капсулу вокруг клетки; это наследственное постоянное свойство), а затем внести ее в бескапсульный штамм, то последний начинает образовывать капсулу. Можно было предположить, что степень очистки ДНК была невысока, и вместе с ней в образец попала часть белков, которые и передали это свойство. Тогда полученный препарат обработали протеазой (фермент, расщепляющий белки), но активность препарата при этом не потерялась; а после обработки препарата ДНКазой его способность передавать свойство образовывать капсулы полностью исчезло.
Второй эксперимент поставили через восемь лет после этого Херши и Чейз. Они использовали бактериофаги. Бактериофаги – это инфекционные агенты, способные заражать бактерии, и имеющие размеры намного меньше бактериальной клетки. В то время было неизвестно, какая именно часть бактериофага несет наследственную информацию; было лишь известно, что бактериофаги состоят из белка и ДНК. Было известно, что если бактериофаги добавить к бактериям, то они проникают в бактериальную клетку и в ней размножаются. Бактериальная клетка разрывается, и новые бактериофаги выходят наружу. В этом эксперименте использовали кишечную палочку и паразитирующие на ней бактериофаги. Белок бактериофагов был мечен радиоактивной серой (35S), а ДНК - радиоактивным фосфором (32Р). Фаги внесли внутрь бактерии. Через некоторое время, достаточное для инфицирования, бактерий отмыли в растворе, и оказалось, что сера отмылась, а внутри бактерий остался фосфор; через некоторое время эти бактерии лопнули, и из них вышли новые частицы фагов. Таким образом было показано, что именно ДНК обеспечила синтез новых фагов, и что именно ДНК является носителем наследственной информации.
Напомним, что последовательность мономеров в цепи называется первичной структурой. Первичная структура белка – это аминокислоты, и первичная структура белков – это нуклеотиды. При записи первичной последовательности нуклеотиды обозначаются одной буквой (A, T, G, C для ДНК и A, U, G, C для РНК). При записи первичной структуры белка аминокислоты обозначают либо тремя начальными буквами их английского названия (аргинин - Arg, метионин - Met) или одной буковой (обозначения указаны в таблице генетического кода в лекции 5).
И нуклеиновые кислоты, и белки обладает пространственной структурой, которую называют вторичной структурой. Последовательность нуклеотидов образует двойную спираль ДНК. Значительная часть молекулы РНК также принимает двуспиральную форму, а часть ее функционирует в одно-нитевом состоянии. На рисунке изображена транспортная и рибосомная РНК.
Для того, чтобы могли образоваться спиральные участки в РНК, части молекулы должны быть друг другу комплементарны. То есть первичная структура РНК (последовательность нуклеотидов) определяет образование вторичной структуры (двуспиральных участков). В больших молекулах РНК разные участки могут комплементарно спариваться друг с другом, образуя различные сочетания двойных спиралей. Какие же будут образовываться на самом деле? Сейчас существуют методы расчетов вторичной структуры РНК, и, по сути, они сводятся к поиску комплементарных участков и перебору возможных образуемых ими структур. Оптимальной считается та, в которой будет спарено наибольшее количество нуклеотидов, то есть наибольшая часть РНК войдет в состав двойной спирали. При этом, она будет более стабильна, чем одно-нитевой клубок. Реально одно-нитевой клубок РНК для больших молекул практически не существует, существуют отдельные одно-нитевые участки. Самокомплементарные нити ДНК также могут образовывать «шпильки».
Чтобы шпилька образовалась, необходимо, чтобы последовательности соответствующих участков были комплементрны. Это называют палиндромами (палиндром – это последовательность, которая в обоих направлениях читается одинаково, например, "А роза упала на лапу Азора" или, если речь идет о ДНК
3'-GACGTC-5'
5'-CTGCAG-3'
Палиндромы образуют шпильки в РНК. Они же могут образовывать шпильки и в ДНК, но так как ДНК двуспиральная, то шпильки на обеих нитях выглядят как крестообразная структура. В процессе функционирования структура может меняться, и один и тот же участок нуклеиновой кислоты может входить то в одну, то в другую шпильку.
Белки образуют вторичные структуры нескольких типов. Наиболее распространены из них два: α-спираль и β-структура. При образовании α-спирали аминокислота взаимодействует с четвертой от нее аминокислотой. То есть, спираль устроена так, что четвертая аминокислота находится над первой. Если они способны образовать водородную связь, то спираль стабилизируется. Вся α-спираль может быть скреплена подобными связями. β-структура – развернутая структура, в которой аминокислотная цепь вытянута. Образованию α-спирали препятствуют пролин (аминокислота, в которой карбоксильная группа и азот жестко закреплены, и в ней невозможно вращение вокруг связей С-С) и одноименно заряженные аминокислоты (они просто отталкиваются друг от друга, не давая спирали образоваться).
В формировании пространственной структуры биополимеров участвуют так называемые гидрофобные взаимодействия и водородные связи. В гидрофобные взаимодействия вступают вещества, молекулы которых состоят из неполярных групп, плохо растворимых в воде (пример: жирные кислоты). В водном растворе ассоциация полярных групп приводит к уменьшению площади контакта гидрофобных групп с диполями воды и снижению потенциальной энергии молекул.