Основание колонии или зона инкрустации. По краю контакта ствола с субстратом имеется краевая зона или зона инкрустирующего роста (рис. 1, Е). Здесь осуществляется стелющийся рост колонии по субстрату. Формируется зона роста после метаморфоза планулы, следовательно, она свойственна колонии с момента се возникновения. В зоне инкрустации у многих видов акропор образуются радиальные кораллиты, ориентированные устьями к растущему краю. По ориентации радиальных кораллитов легко установить границу между стволом и основанием колонии (рис. I, E, 9).
Структура скелета радиальных кораллитов и остального скелета в зоне инкрустации обычно несколько отличается от таковой ствола. Подошву зоны инкрустации выстилает скелет, состоящий из особых элементов — шестигранных пластинок, плотно прилегающих друг к другу. Нигде более в нормальной колонии такие элементы не встречались. Благодаря разрастающемуся основанию колония прочнее прикрепляется к субстрату. Зона инкрустации, повторяя рельеф субстрата и проникая в мелкие полости, способствует усилению, прочности связи между колонией и субстратом. В зоне инкрустации возможно образование новых ветвей колонии на основе разрастания отдельных радиальных кораллитов. Для некоторых видов, например A. humilis (Dana, I846), это основной способ ветвления. Еще одна функция зоны инкрустации—предотвращение обрастания колонии другими кораллами. Конкурентная борьба между колониальными кораллами часто осуществляется при соприкосновении их оснований.
В ряде случаев инкрустирующий рост играет важную роль в процессе реколонизации. Нередко вся базальная часть колонии заносится песком и отмирает. После отступления песка выжившая часть колонии формирует зону инкрустирующего роста и обрастает затем свой же отмерший скелет. Так может повторяться много раз, и в строении скелета в соответствующей части колонии это находит ясное отражение. У разных видов Асrороrа соответствующие четыре части колонии развиты не в одинаковой пропорции. Так, A. formosa, A. pulchra (Brook, 1891), A. aspera имеют слабо выраженный ствол, но ярко выраженные ветви. Напротив, у A. hyacinthus (Dana, 1846) и A. clathrata (Brook, 1891) веточки маленькие, а ствол, представляющий продукт слияния ветвей, составляет основную часть тела колонии. У A. humilis и A. digitifera (Dana, 1846) ствол вообще сливается с зоной инкрустации и не может быть от нее отделен. Подобных примеров много, они требуют специального изучения. Для осуществления подобной работы необходим сбор целых колоний, а не нх фрагментов, при точном указании глубины, особенно вблизи поверхности рифа. Применение аквалангистской техники позволяет это осуществить.
Система полостей в скелете колонии
Многочисленные разноразмерные полости в скелете ветви Асrороrа расположены довольно упорядоченно. В размещении полостей прослеживается радиальная симметрия. Кроме того, полости расположены концентрическими окружностями (рис. 1, Г). Более подробное изучение системы полостей показало, что все они связаны между собой, но могут быть подразделены на пять основных подсистем.
В центре по оси ветви проходит аксиальный канал (рис. 1, А,Б,Г, 4). Полость его поделена шестью продольными септами на секторы. Аксиальный канал представляет продолжение гастралыюй полости аксиального кораллита, мезентерии которого простираются по каналу на расстояние нескольких сантиметров.
Два концентрических круга мелких полостей (рис. 1, А, Б, Г, 5) окружают аксиальный канал. Так как терминология для этих полостей не разработана, то можно называть нх подсистемой циркумаксиальных полостей. Скелет, окружающий аксиальный канал и эти полости, формируется в процессе роста аксиального кораллнта. Циркумаксиальные полости закладываются по периферии аксиального кораллита и являются таким же его продолжением, как и аксиальный канал.
Более крупные полости, выявленные на сколе то ближе, то дальше от оси ветви, — это полости радиальных кораллитов. В каждой такой полости можно обнаружить пару направляющих септ. Полости различаются на поперечном сколе по размерам: чем они ближе к центру, тем мельче. Это, во-первых, объясняется тем, что полости у радиальных кораллитов расширяются к устью и, следовательно, чем дальше от устья рассматривать сечение полости, тем оно мельче. Во-вторых, плоскость поперечного скола по-разному сечет полость изогнутого радиального кораллита: чем ближе к периферии, тем более касательно.
Полости радиальных кораллитов со всех сторон окружены подсистемой интеррадиальных полостей (рис. 1, Б, Г, 7). Эти полости делают скелет пористым, и благодаря им осуществляется связь между кораллитами. Скелет, в котором расположены интеррадиальные полости, состоит из радиалыю расходящихся стенок с отверстиями. Стенки довольно регулярно соединены между собой поперечными балками.
На поверхности скелета ветви между его ребрами и столбовидными элементами находится подсистема поверхностных полостей, ограниченная с внешней стороны ценосарком (рис. 1, Б, Г, 8). На внешних краях элемента скелета происходит их нарастание (рис. 2, А), что приводит к формированию очередного “этажа” и замыканию полостей, лежавших первоначально на поверхности, т. е. приобщение их к подсистеме интеррадиальных полостей (рис.2, Б). Иными словами, каждая полость в интеррадиальной подсистеме была в свое время поверхностной.
Полости в колонии обычно выстланы живой тканью, что легко обнаружить по окрашиванию ее витальными красителями. Полости служат для прохода мезентериальных нитей (аконций), длина которых может приблизительно в 10 раз превышать длину кораллита. На сколах хорошо видно, как аконции движутся по проходам.
Рис. 2. Схема формирования и строения скелета на участке между кораллитами у поверхности ветви коралла рода Асrороrа, а также взаимное положение скелета и ценосарка (ткани, выстилающие скелет внутри колонии, не изображены): A—схема последовательных этапов роста столбовидных элементов скелета; Б—молодой участок ветви с острыми столбовидными элементами скелета; В—старый участок ветви с тупыми элементами скелета на поверхности и полностью заросшими полостями в центре ветви: /—5 — последовательные этапы роста элемента скелета; 6 — эктодерма ценосарка; 7— энтодерма ценосарка; 8 — зооксантсллы в энтодерме; 9 — мигрирующие клетки и частицы; 10—подсистема поверхностных полостей; П—подсистема интеррадиальных полостей
Очевидно, ткань, выстилающая скелет, не прекращает кальцификацию, так как со временем полости уменьшаются в размерах вплоть до полного их исчезновения (рис, 2, В). Скелет в старых частях колонии слабопористый, почти монолитный (рис. 1, Д). Естественно, что периферические полости в старой части колонии могут быть совсем молодыми и поэтому крупными. Из-за кальцификации центра ветви в старых ее частях транспорт веществ в них может осуществляться только по периферии, и главной в этом отношении становится подсистема поверхностных полостей.
Распределительная система в колонии
Система полостей в колонии определяет морфологическую основу распределительной системы. О распределительной системе у герматипных кораллов в литературе нет сведений. Эксперименты над акропорами позволили внести некоторую ясность по этому вопросу. С помощью инъекций мелких частиц активированного угля (использовались медицинские таблетки угля) удалось установить, что жидкость, заполняющая внутренние полости, находится в движении Сквозь покровы ценосарка и полипов было видно перемещение инъецированных частиц угля. По-видимому, движение внутренней жидкости осуществляется благодаря работе ресничек. Через ротовые отверстия полипов жидкость не выходит наружу колонии, т. е внутренняя среда достаточно замкнута.
Попытки косвенного изучения распределительной системы без повреждения ветви оказались безуспешными, поэтому была разработана простая методика для регистрации внутренних течений при вскрытии колонии. Часть ветви отсекали, переворачивали сколом кверху, и обе половинки укрепляли вертикально в аквариуме. Поверхности скола на обеих частях оказывались обращенными вверх. На каждую поверхность из пипетки наносили раствор витального красителя (нильский голубой). Краситель засасывался в те полости, через которые течение шло внутрь колонии, и окрашивал ткани, выстилающие эти полости. Напротив, там, где направление течения было из ветви, краска этим течением отгонялась, не приходила в соприкосновение с тканью и не окрашивала ее. Результаты эксперимента и его методика показаны на рис. 3.
Рис. 3. Схема экспериментальной индикации постоянных течений внутри ветви у акропор с помощью витального красителя: 1,2 — изначально обращенные вверх (/) и к субстрату (2) стороны ветви на схеме поперечного скола. Точками отмечены окрасившиеся участки скола, в которых засасывающее течение было направлено внутрь ветви
Окраска показала, что на двух частях одной ветви окрашивались противоположно расположенные секторы. Это означает, что по одной стороне ветви течение идет к верхушке ветви, а по другой — к ее основанию. В аксиальном же канале преимущественно наблюдалось течение, направленное к основанию. Эксперимент, повторенный с толченым углем, дал такие же результаты. Непосредственное наблюдение под бинокуляром за исходящим течением по движению выносимых им частиц и клеток также подтвердило опыт. Эксперимент был расширен путем инъекции угля в проксимальную часть неповрежденной ветки. Благодаря тому, что в проксимальной части распределительная система ограничена периферическими полостями, здесь можно наблюдать за движением частиц угля под покровами достаточно долго, так как частицы не могут проникнуть в глубь колонии. Результат и этого опыта не противоречил полученным ранее данным. Следовательно, наблюдаемый эффект не является результатом повреждения ветви при ее расколе.