Каунова Анастасия Александровна
Автореферат диссертации на соискание ученой степени кандидата химических наук
Краснодар 2006
Работа выполнена на кафедре аналитической химии Кубанского государственного университета
Общая характеристика работы
Актуальность темы. С интенсификацией техногенного воздействия на окружающую среду повышаются требования к методам анализа природных объектов, стабильности работы методик и метрологическим параметрам результатов определений. Контроль содержания токсичных гидридобразующих элементов (As, Sb, Se, Te) в этих объектах является актуальной и сложной задачей (низкий уровень содержаний, сложный матричный состав).
При анализе объектов с низкими содержаниями токсикантов широкое применение получил метод электротермической атомно-абсорбционной спектрометрии (ЭТААС) с различными вариантами концентрирования элементов.
Устранение погрешностей, связанных с преждевременным испарением легколетучих элементов на стадии термической обработки и влияниями компонентов матрицы, проводят путем введения химических модификаторов матрицы (различных металлов и их соединений) и оптимизации условий работы печи. Модифицирующими свойствами обладает также и углерод в различных его модификациях за счет возможной адсорбции и удерживания определяемых элементов при достаточно высоких температурах пиролиза. Поэтому целесообразным представляется поиск и исследование свойств смешанного химического сорбента-модификатора на основе активированного угля и никеля; изучение его аналитических характеристик в варианте прямого ЭТААС определения As, Se, Sb, Те и с предконцентрированием их гидридов.
Диссертационная работа выполнена при поддержке грантов РФФИ № 03-03-96529-р2003юг-а, 06-03-32257-а, 06-03-96608-р-юг-а.
Цель работы. Разработка и исследование аналитических схем электротермического атомно-абсорбционного определения As, Se, Sb, Те с использованием никелевых модификаторов на основе активированного угля и техники дозирования его суспензии в графитовую печь спектрометра.
Для достижения поставленной цели решались следующие задачи:
- синтез и исследование физико-химических свойств модификаторов на основе никеля (текстура, микроструктура, химическое состояние компонентов);
- исследование термостабилизирующих свойств никельсодержащих композиций и оценка возможности их использования в качестве модификаторов матрицы для ЭТААС определения элементов в объектах со сложной матрицей;
- кинетические и термодинамические исследования процессов, протекающих в графитовой печи, в присутствии никельсодержащего модификатора;
- разработка методики прямого ЭТААС определения элементов в природной воде и растительных материалах с использованием никельсодержащего модификатора и техники дозирования суспензий;
- разработка схемы анализа, включающей концентрирование гидридов элементов на никелевом сорбенте-модификаторе и последующее их ЭТААС определение по технике дозирования суспензии.
Научная новизна. Разработаны аналитические схемы ЭТААС определения элементов при использовании никельсодержащего сорбента-модификатора и техники дозирования суспензий.
Разработан никельсодержащий сорбент-модификатор на основе активированного угля для аналитических целей, получены данные об его структуре, модифицирующих и сорбционных свойствах.
Практическая значимость. Разработанные методики ЭТААС определения As, Se, Sb и Те с использованием Ni-содержащего активированного угля апробированы при анализе растительных материалов, природной и водопроводной вод.
На защиту выносятся:
- результаты синтеза и физико-химических исследований свойств Ni-содержащих материалов;
- данные по модифицирующей эффективности никельсодержащих материалов по отношению к As, Se, Sb и Те;
- результаты кинетических и термодинамических исследований процессов, протекающих в атомизаторе, в системах «определяемый элемент – никель-углеродный модификатор»;
- новые схемы электротермического атомно-абсорбционного определения As, Se, Sb и Те в водах и растительных материалах.
Апробация работы. Материалы диссертации докладывались на Всероссийской конференции по аналитической химии «Аналитика России 2004» (Москва, 2004), III Международной конференции по новым технологиям и приложениям современных физико-химических методов для изучения окружающей среды (Ростов-на-Дону, 2005), XVII Уральской конференции по спектроскопии (Новоуральск, 2005), II Международном симпозиуме «Разделение и концентрирование в аналитической химии и радиохимии» (Краснодар, 2005), Международном конгрессе по аналитической химии (Москва, 2006), VII Европейском симпозиуме по электротермической атомно-абсорбционной спектрометрии (Санкт-Петербург, 2006).
Публикации. По материалам диссертационной работы опубликовано 13 работ, в том числе 6 статей.
Структура и объем работы. Диссертация состоит из введения, обзора литературы, трех глав экспериментальной части, выводов, списка цитируемой литературы, приложения. Материал диссертации изложен на 152 страницах текста, содержит 28 рисунков и 18 таблиц, в списке цитируемой литературы 137 наименований.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Обзор литературы
В литературном обзоре обобщены данные о применении различных групп химических модификаторов матрицы в современной электротермической атомно-абсорбционной спектрометрии при определении легколетучих элементов и для предварительного концентрирования элементов в виде их газообразных гидридов. Особое внимание уделено модификаторам на основе никеля, металлов платиновой группы, тугоплавких карбидов, органических модификаторов и углерода. Рассмотрены методы изучения механизмов действия модификаторов. Обсуждены достоинства и недостатки применения химических модификаторов в ЭТАСС.
Экспериментальная часть
Никельсодержащий активированный уголь (NiАУ) получали из активированного угля марки БАУ (ЗАО «Медисорб», г. Пермь) и растворов нитрата никеля. Были получены и изучены композиции никельсодержащего активированного уголь с различными содержаниями металла и синтезированные в различных условиях.
Исследование структурных свойств материалов проводили с использованием: установки низкотемпературной сорбции жидкого азота ASAP-2400 (Micromeritics, США); высокоразрешающего электронного микроскопа JEM-2010 (JEOL, Япония), укомплектованного EDX-спектрометром (энерго-дисперсионный рентгеновский фотоэлектронный) с рентгеновским микрозондом; рентгенофотоэлектронного спектрометра ESCALAB HP (Vacuum Generator, Великобритания).
Для изучения свойств разработанного сорбента-модификатора в работе использован атомно-абсорбционный спектрометр SpectrAA-800 с дейтериевой коррекцией неселективного поглощения, блоком электротермической атомизации GTA-100 и автодозатором PSD-97 (все «Varian», Австралия), графитовые трубки с пиропокрытием, снабженные интегрированной платформой и ограничительными ободками по ее концам. В качестве источников резонансного излучения служили лампы с полым катодом на мышьяк и сурьму («Varian», Австралия), селен и теллур («Hitachi», Япония). Режимы работы спектрометра и программа атомизатора приведены в табл.1.
Таблица 1 – Режимы работы спектрометра SpectrAA-800
и электротермического атомизатора GTA-100
Параметр | Элемент | |||||
мышьяк | селен | теллур | сурьма | |||
Длина волны, нмЩель, нмТок лампы, mA | 193,70,78,0 | 196,00,811,0 | 214,30,28,0 | 217,80,210,0 | ||
Стадия | Темпера-тура, °С | Время выдержки, с | Поток газа, л/мин | |||
СушкаТермическая обработкаАтомизацияОчистка печи | 120 150–19001700–25002600 | 20,010,03,03,0 | 2,00,503,0 |
Физико-химические исследования
Основа из активированного угля характеризуется высоко развитой поверхностью частиц и поровым пространством, а также высокими значениями объема и поверхности транспортных пор (мезопор) (табл. 2). Появление транспортных каналов способствует более активному взаимодействию материалов с определяемыми элементами и компонентами матрицы анализируемых проб.
Таблица 2 – Текстурные параметры разработанного
материала
Основа | Текстурные параметры | |||||
Σ S,м2/г | Sμ,2/г | Sме,м2/г | ΣV,см3/г | Vμ,см3/г | Vме,см3/г | |
Активиро-ванныйуголь | 605 | 499 | 106 | 0,36 | 0,24 | 0,120 |
В условиях оптимальных режимов синтеза модификатора добавка никелевого реагента существенно не изменяет текстурные характеристики исходной композиции.
Результаты исследований углеродной основы синтезированных материалов методом электронной микроскопии (рис.1 а), свидетельствуют о том, что она представляет собой графитизированный углеродный материал, состоящий из разупорядоченно агрегированных микрокристаллов размером порядка 2 нм.
Частицы никеля разнодисперсны: на некоторых участках носителя имеют малые размеры: 5–10 нм; а на других – большие: >50 нм (рис.1б), причем, металл находится преимущественно в окисленном состоянии. Данные энерго-дисперсионного анализа образцов показали, что основными компонентами синтезированного материала являются углерод, никель и кислород, а присутствие посторонних примесей: Mg, Si, Al, P, S, Cl, K, Ca незначительно.
а) б)
углеродная (а) и никелевая (б) составляющие
Рисунок 1 – Строение никельсодержащего активированного угля
Максимальное содержание кислорода, а, следовательно, и окисленного углерода (~60%) наблюдается в никельсодержащем активированном угле, не подверженном температурной обработке (рис. 2А, табл.3), по сравнению с аналогичным