Поскольку в допредельных токовых режимах отношение концентрации соли у поверхности мембраны и в глубине раствора определяется величиной
, а в сверхпредельных токовых режимах определяет протяженность области пространственного заряда, то можно сказать, что величина характеризует степень развития концентрационной поляризации. Нормировку плотности тока удобно проводить на величину , которая легко рассчитывается по уравнению (2). Такой подход позволяет сравнивать поведение различных мембранных систем при сходных для развития сопряженных эффектов условиях и оценивать влияние того или иного эффекта на их электрохимическое поведение.При сравнении электрохимического поведения различных мембранных систем с использованием вольтамперометрии вместо суммарного скачка потенциала tot удобно использовать приведенную величину скачка потенциала
, определяемую как'tot −i
tot −i Ref (5)где
– суммарный скачок потенциала, Ref = − эффективное сопротивление мембранной системы при низких плотностях тока i<< , которое включает в себя омическое сопротивление пространства (мембрана+раствор) между измерительными электродами и диффузионное сопротивление обедненного и обогащенного диффузионных слоев. Величина Ref находится экспериментально по наклону начального участка ВАХ. показывает превышение скачка потенциала в системе над величиной, которая бы имела место при сохранении линейного роста потенциала, наблюдаемого при . Физический смысл приведенного скачка потенциала близок к перенапряжению , известному в электрохимии электродных систем.Для сравнения результатов хронопотенциометрии различных мембранных систем используется сходная с
по смыслу разность потенциалов tot–Ohm, где первичный омический скачок потенциала находят как скачок потенциала между измерительными электродами, вызванный включением тока, в условиях, когда градиенты концентрации отсутствуют.В третьей главе проведен сравнительный анализ равновесных, структурно-кинетических и транспортных характеристик исходных и модифицированных мембран.
Таблица – Равновесные и транспортные характеристики мембран
Мембрана | θо | Q,мМ/млнабух | f2,NaCl | km, мСм/см1 M NaCl | km, мСм/см 1 M NaOH | |
МА-40 | 0.19±0.03 | 23±3 | а3.200.08к0.610.02 | 0.26±0.02 | 6.86±0.17 | 3.37±0.07 |
МА-40М1% | 0.19±0.03 | 32±3 | а3.18±0.08к0.59±0.02 | 0.29±0.02 | 4.93±0.15 | 3.87±0.12 |
МА-40М5% | 0.21±0.03 | 33±3 | а3.16±0.08к0.58±0.02 | 0.25±0.02 | – | 4.41±0.22 |
МА-40М15% | 0.19±0.03 | 46±4 | а3.20±0.08к0.60±0.02 | 0.29±0.02 | 4.50±0.13 | 4.20±0.21 |
MA-41 | 0.28±0.03 | – | а1.25±0.08 | 0.20±0.02 | 11.00±0.33 | 54.3±0.02 |
МК-40 | 0.22±0.03 | 22±2 | к1.70±0.10 | 0.23±0.02 | – | – |
Nafion-117, окислительно-термическая подготовка | 1.0 | 84±5 | к1.31±0.05 | 0.12±0.02 | – | – |
CMX | 1.0 | 46±4 | к1.57±0.1 | 0.05±0.01 | 8.70±0.43 | – |
Из микрофотографий, полученных на электронном сканирующем микроскопе видно, что для мембран МА-41, МА-40 и МК-40 линейные размеры проводящих участков поверхности составляют 10-30 мкм (рисунок 1а) и сопоставимы с типичной толщиной диффузионного слоя в электромембранных системах. Доля проводящей поверхности мембраны
после ее однократного набухания увеличивается в несколько раз по сравнению с не подвергавшимся этой процедуре образцом. Вместе с тем, даже для набухшей мембраны МА-41, характеризуемой наибольшим значением , этот параметр равен не более 28 ± 3%. Установлено, что доля полиэтилена на поверхности МА-40, МК-40, МА-41 составляет 72-83% при его объемной доле внутри мембраны 30-40%. Размеры неоднородностей поверхности гомогенных мембран имеют порядок 1 мкм, что значительно меньше толщины диффузионного слоя. Их поверхность может рассматриваться как однородная (рисунок 1б).а | б | в |
Рисунок 2 – Содержание элементов C, N, O в ионообменном материале (а), (б) и полиэтилене (в) мембраны МА-40М15%
Из данных рентгеноспектрального микроанализа, совмещенного с электронной микроскопией, а также результатов определения доли межгелевых промежутков с использованием микрогетерогенной модели (таблица) следует, что модифицирование полиэлектролитным комплексом не нарушает исходной структуры поверхности и объема мембраны МА-40. Оно не затрагивает полиэтиленового связующего и протекает в гранулах ионообменной смолы, находящихся в приповерхностном слое мембраны толщиной 40-80 мкм. Глубина проникновения ПЭК в мембрану по данным рентгеноспектрального анализа (рисунок 2) совпадает с оценками, сделанными по формуле (1) с использованием результатов измерения электропроводности исходной и модифицированной мембран в растворах NaOH. Уменьшение интенсивности пика, фиксируемого на ИК-спектрах в области 3380 см–1, заметный рост электропроводности в щелочных растворах и увеличение угла смачивания 0.02 М раствором NaCl влажной мембраны (таблица) показывают, что наличие ПЭК в приповерхностных слоях приводит к увеличению гидрофобности и снижению содержания на поверхности МА-40М протонированных вторичных и третичных аминогрупп при сохранении той же полной обменной емкости мембраны по анионам (таблица). Наличие в этих мембранах обменной емкости по катионам (таблица), а также атомов кислорода в ионообменном материале, регистрируемых в условиях вакуума методом рентгеноспектрального микроанализа, указывает на присутствие в МА-40 и МА-40М карбонатных и/или карбаматных групп. Эти группы могут образовываться как в результате реакций гидролиза ПЭК, так и вследствие взаимодействия аминов ионообменного материала мембраны с углекислым газом, поглощаемым из воды и воздуха. По-видимому, наличие этих групп и обеспечивает взаимодействие модифицирующего полиэлектролита с ионообменным материалом мембраны. В результате мембраны МА-40М стабильно функционируют без изменения свойств в течение длительного времени, в том числе и при интенсивных токовых режимах.
Как следует из данных ИК-спектроскопии и рентгеноспектрального анализа, с увеличением процентного содержания ПЭК в растворе, используемом для модификации мембран, содержание четвертичных аммониевых оснований на поверхности мембран растет. Вместе с этим меняются и транспортные свойства модифицированной мембраны.
Четвертая глава диссертации посвящена исследованию механизмов массопереноса в мембранных системах при обессоливании разбавленных солевых растворов в интенсивных токовых режимах.
Важную информацию дает сравнение ВАХ и рН раствора в ОДС исходной МА-40 и модифицированной полиэлектролитным комплексом МА-40М мембран. Как следует из рисунка 3, указанная модификация поверхности мембраны МА-40 приводит к снижению интенсивности генерации ионов H+ и OH−: изменение рН раствора в ОДС мембраны МА-40М5% меньше, чем для исходной мембраны МА-40 и гомогенной мембраны АМХ, взятой для сравнения. В другом эксперименте, при обессоливании 0.005 М раствора NaCl (V=1.6 см/с и h=1.1 мм) числа переноса ионов OH− для мембран МА-40 и МА-40М5% при
=1.5 равны 0.39 и 0.22 соответственно. Причиной этого явления служит трансформация вторичных и третичных аминогрупп в четвертичные в поверхностном слое МА-40.