Смекни!
smekni.com

Синтез и физико-химические свойства магний - алюминиевого сорбента со структурой гидроталькита (стр. 3 из 4)

≡+Ме- ОН + [HgHaI3 ]– <=> ≡+МеHal- HgHaI2 + ОН– ,

то есть в отсутствии гидролизованных форм Hg(II) в растворах можно предположить ионообменный механизм сорбции. Повышение Е для гидролизованных форм Hg(II) связано с тем, что в данном случае образуются поверхностные внутрисферные комплексы AIOHgCI и AIOHgOHCI. Следует отметить понижение сорбции Hg(II) из растворов, содержащих ионы Br- и I- (табл.4), что можно объяснить повышением устойчивости комплексов [HgНаI3]- , [HgНаI4]2- (рК [HgBr3]–=19,7; рК [HgBr4]2-=21,0; рК [HgI3]–=27,6; рК[HgI4]2– =29,8).

Таблица 4.

Результаты сорбции Hg(II) из растворов, содержащих ионы НаI –

Анион в растворе CI- Br- I-
Е, мг Hg(II)/г СОГ 24,6 15,4 8,3

Установлено, что по мере роста ионообменного механизма поглощения Hg (II) увеличивается доля десорбированной ртути (табл.5).

Таблица 5

Экспериментальные данные десорбции анионов раствором Na2 НРO4

Анион [HgСI4]2– [HgBr4]2- [Hg I4]2-
Степень десорбции, % 45 68 98

На основании полученных данных можно сделать вывод, что взаимодействие ионов CrO4 2- и [Hg I4]2- происходит по ионообменному механизму, а в случае остальных анионов могут происходить специфические реакции (образование основных солей и смешанных гексацианоферратов), сопровождающие ионный обмен.

При изучении кинетики сорбции анионов на полученном сорбенте для реализации анионного обмена в чистой форме в качестве модельных анионов использовали галогенид ионы. Ионный обмен проводили из раствора КС1 с концентрацией 0.001 М, при температуре 23°С, рН раствора 9,0. Отсутствие влияния стадии стока ионов в твердую фазу сорбента было подтверждено экспериментально путем последовательного уменьшения размеров гранул и определением скорости поглощения хлорид-ионов для каждой из выделенных фракций. Анализ зависимости скорости ионного обмена от размера гранул подтвердил, что кинетика лимитируется стадией диффузии в поровом пространстве гранул.

Для описания экспериментальных данных кинетики ионного обмена использована математическая модель, предложенная профессором Вольхиным В.В., которая основывается на следующих предположениях:

1. Кинетика обмена хлорид-ионов на СОГ магния и алюминия

лимитируется стадией диффузии ионов в поровом пространстве гранулы.

2. Гранулы СОГ магния и алюминия представляют собой агломераты из кристаллитов. Пространства между ними составляют макропоры,

заполненные раствором, по которым обеспечивается транспорт ионов

внутрь гранулы из внешнего раствора. Снижение коэффициента диффузии

внутри пор, составляющих каналы, объясняется меньшей проницаемостью

гранул, извилистостью каналов, по которым диффундируют ионы, их

взаимодействием со стенками пор, где возможно образование двойного

электрического слоя, повышенной вязкостью раствора в порах.

3. Коэффициент взаимодиффузии ионов в поровом пространстве

гранулы определяется согласно модели Туницкого-Гельфериха, при этом

подвижности ионов в поровом пространстве пропорциональны их

подвижностям во внешнем растворе.

4. Изотерма обмена может быть представлена в ленгмюровском виде.

5. Гранулят предполагается монодисперсным, форма гранул - сферическая.

Кинетическая кривая сорбции хлорид - ионов на СОГ магния и алюминия представлена на рис. 3

Е,ммоль/г


t. сек

Рис. 3 Кинетическая кривая сорбции хлорид - ионов на СОГ магния и алюминия

На кинетической кривой обнаружены два кинетических участка: первый участок отвечает диффузии ионов в макропорах сорбента, на втором участке наблюдается более медленный обмен хлорид-ионов, что, на наш взгляд, вызвано анионным обменом в межслоевых пространствах. Полученные кинетические данные свидетельствуют о высокой скорости химических реакций, приводящих к извлечению анионов из раствора, а также о том, что данные материалы могут быть использованы в процессах очистки сточных вод.

В четвертой главе представлен алгоритм и программа расчета динамики сорбции. Для исследований применен метод, основанный на фильтровании через короткие слои сорбента.

Исследование проводили следующим образом: колонку диаметром 20мм и длиной 400мм загружали исследуемым сорбентом с заданной толщиной слоя и установленным ранее диаметром зерен 2,5-3мм. Фильтрование модельных стоков проводили с заданными концентрациями ионов. Скорость фильтрования поддерживали медицинским дозатором. Пробы фильтрата для анализа отбирали через каждые 20 минут. Концентрацию определяли фотоколориметрическим методом анализа, рН контролировали рН-метром.

На первом этапе исследования толщина слоя сорбента (l) составляла l=400мм. Скорость фильтрования устанавливали υ1=2м/ч, υ 2=3м/ч, υ4=4м/ч. Эффективность очистки стоков во времени оценивалась уровнем проскоковой относительной концентрации (U) ионов в фильтрате, которая определяется соотношением:

U=Сф/С0 ,

где Сф-концентрация ионов в фильтрате;

С0- концентрация ионов в воде, поступающей на фильтрацию.

Процесс фильтрования прекращали, когда уровень проскоковой относительной концентрации стабилизировался. Следующая серия опытов проводилась аналогично, но постоянными оставались концентрация ионов и скорость υ3 =3 м/ч.

В качестве теоретической основы экспериментального определения параметров сорбции использовали математическую модель Петрова, позволяющую описать экспериментально полученные закономерности. При разработке модели использовали методы, позволяющие решить систему дифференциальных уравнений, предложенные Е.В.Венециановым и Е.Г.Петровым.

При проведении опыта известными и постоянными величинами являются: толщина слоя сорбента l, средний диаметр зерен d, скорость фильтрования (υ). Кроме этого постоянными, но неизвестными величинами являются коэффициенты, характеризующие процесс сорбции.

Этими параметрами являются коэффициент внешней диффузии β и кинетические параметры: коэффициент внутренней диффузии D и критерий, учитывающий относительный вклад внешней и внутренней диффузии Н (критерий Био). Массообменным (емкостным) коэффициентом, характеризующим распределение адсорбированного вещества, является коэффициент Генри Г.

Критерий Био равен

(1) ,

безразмерная толщина (Х) слоя сорбента равна

(2).

Связь между безразмерным (Т) и реальным(t) временем сорбционного процесса определяется по формуле:

(3) ,

откуда следует однозначное соответствие этих времен.

После логарифмирования последнего соотношения получим:

(4)

Из выражения (4) следует, что в логарифмической системе координат эта связь становится аддитивной, и однозначное соответствие времен может быть установлено продольным смещением временных осей относительно друг друга. Методика сопоставления экспериментальных и теоретических кривых следующая: в результате фильтрования через слой сорбента получают экспериментальные точки зависимости

uэ=f(tэ) (5),

где uэ-экспериментально определенная относительная концентрация ионов в фильтрате; tэ-время, отсчитываемое с начала фильтрования.

Экспериментальные точки этой зависимости наносили на билогарифмическую сетку (рис.4), полностью аналогичную сетке теоретических кривых добиваясь при этом путем перемещения графиков вдоль осей времени наилучшего совпадения экспериментальных точек с одной из теоретических кривых U=F(X,T) при Н=const до соблюдения равенства uэ=U.

Рис.4 Наложение экспериментальных точек фильтрования на теоретические кривые динамики сорбции из жидких сред для [Fe(CN)6]3-.

Проведенные исследования позволили расчетным путем провести количественную оценку относительной способности ионов адсорбироваться полученным сорбентом, и на основе сопоставления расчетных и экспериментальных данных определить эффективность теоретических прогнозов и выявить те факторы, влияние которых приводит к отдельным отклонениям.

Выводы

1. Разработана новая методика синтеза сорбента на основе гидроксидов магния и алюминия со структурой гидроталькита с использованием золь-гель процесса.

2. Определены адсорбционно-структурные характеристики СОГ (удельная поверхность -135м2/г), общий объем пор - 0.34см3/г, распределение пористости по эквивалентным радиусам), позволяющие предложить синтезированный совместно осажденный гидроксид магния и алюминия в качестве неорганического ионообменника. Величину удельной поверхности образца определяли по низкотемпературной адсорбции азота хроматографическим методом с последующей обработкой полученных результатов по методу БЭТ. Для определения пористости использована ртутная порометрия.

3. Методами ИК-спектроскопии и ренгенофазового анализа установлены механизмы взаимодействия CrO42-, [Fe(CN)6]3-, [Fe(CN)6] 4, HgI4] 2- с совместно осажденным гидроксидом магния и алюминия со структурой гидроталькита.