Смекни!
smekni.com

Перенос ионов в трехслойных ионообменных мембранных системах при интенсивных токовых режимах (стр. 2 из 5)

4. Модификация метода параллельной стрельбы с продолжением по параметрам, автоматическим выбором шага переменной длины и логарифмической заменой переменных при численном решении краевой задачи системы уравнений Нернста-Планка и Пуассона.

Апробация работы. Основные результаты работы неоднократно докладывались на Всероссийских и Международных конференциях по экологии, мембранной электрохимии, прикладной математике: 6-ой Международной конференции «Экология и здоровье человека. Экологическое образование. Математическое моделирование и информационные технологии» (Краснодар, 2001), I Всероссийской конференции «Физико-химические процессы в конденсированном состоянии и на межфазных границах «Фагран-2002» (Воронеж, 2002), X Всероссийской конференции грантодержателей РФФИ (Туапсе, 2002), 30-й Всероссийской конференции "Мембранная электрохимия. Ионный перенос в органических и неорганических мембранах" (Туапсе, 2004), Международной конференции «Citem05 Congreso Iberoamericanode Ciencia Y Tecnologia De Membranas» (Валенсия, 2005).

Публикации. По материалам диссертации опубликовано 14 печатных работ, из них 7 статей, 7 тезисов докладов.

Структура работы.

Диссертация состоит из введения, пяти глав, заключения, списка использованных источников (171 наим.) и приложения. Работа изложена на 151 стр., в том числе содержит 46 рисунков и 3 таблицы.

СОДЕРЖАНИЕ РАБОТЫ

В первой главе приведен обзор научных исследований по экологическим проблемам загрязнения водных ресурсов, а также по проблеме нехватки пресной воды. Дан сравнительный анализ используемых методов для очистки воды. Особое внимание уделено мембранным методам очистки, как одним из наиболее перспективных.

Во второй главе проведен сравнительный анализ математических моделей переноса ионов через ионообменные мембраны.

Допредельное состояние ионообменной мембранной системы, когда выполняется условие электронейтральности, исследовалось Ю.А. Гуревичем, Ю.И. Харкацем, А.В. Сокирко, T.R. Brumleve, R.P. Buck, V. Aguilella, J. Carrido, S. Mafe, J. Pellicer, R.J. French (рассматривался отдельно взятый диффузионный слой); A. Sipila, A. Ekman, K. Konttury, S. Mafe, J. Pellicer, V. Aguilella (рассматривалась отдельно взятая мембрана); Э.К. Жолковским, В.И. Заболоцким, Н.П. Гнусиным, В.В. Никоненко, К.А. Лебедевым, G.B. Wills (рассматривалась трехслойная мембранная система, включающая мембрану и прилегающие к ней диффузионные слои).

Теоретическое исследование процесса переноса ионов при интенсивных токовых режимах, с учетом пространственного заряда, проводилось в работах Б.М. Графова, А.А. Черненко, Ю.И. Харкаца, А.В. Листовничего, В.И. Заболоцкого, Н.П. Гнусина, М.Х. Уртенова, В.В. Никоненко, I. Rubinstein, L. Shtilman, B.Zaltzman, O. Kedem (в одном слое); В.И. Заболоцкого, J.A. Manzanarez, S. Mafe, В.В. Никоненко, К.А. Лебедева (в трех слоях).

Электродиффузионный перенос ионов с учетом диссоциации воды изучался Ю.И. Харкацем, А.В. Сокирко, Э.К. Жолковским, В.И. Заболоцким, Н.П. Гнусиным, В.В. Никоненко, Н.В. Шельдешовым, М.Х. Уртеновым, Н.Д. Письменской.

I. Rubinstein, L. Shtilman, B.Zaltzman, В.А. Бабешко, В.И. Заболоцкий, М.Х. Уртенов, В.В. Никоненко, В.А. Шапошник, В.И. Васильева исследовали процесс массопереноса в ионообменных мембранных системах с учетом сопряженной конвекции.

В работах данных авторов было установлено:

1) в диффузионном слое не существует условий для достижения реально наблюдаемых парциальных потоков ионов водорода и гидроксила;

2) диссоциация воды происходит на границе мембрана/ диффузионный слой в фазе мембраны, где имеются каталитически активные ионообменные группы;

3) сопряженная термо- и электроконвекция приводят к изменению толщины диффузионного слоя.

Показано, что ни одна из ранее существующих однослойных и многослойных моделей не раскрывает до конца механизм переноса ионов через мембранные системы в сверхпредельном состоянии из-за недостаточности или односторонности учета ряда сопутствующих явлений. Таким образом, для получения адекватных эксперименту результатов необходимо построение математической модели переноса ионов в трехслойной мембранной системе с одновременным учетом сопряженных явлений, возникающих в запредельных токовых режимах.

В третьей главе предлагается модифицированный численный метод параллельной стрельбы с переменным шагом решения краевых задач для систем уравнений Нернста-Планка и Пуассона.

Необходимость модификации метода параллельной стрельбы вызвана тем, что метод параллельной стрельбы с постоянным шагом позволяет решать сингулярно возмущенные задачи для не очень малых значений параметра при старшей производной

. При меньших значениях малого параметра
отрезок интегрирования приходится разбивать на большое количество подотрезков ~105…107. В результате размерность системы увеличивается настолько, что реализация итерационной процедуры на ЭВМ становится затруднительной из-за большого объема хранимых данных, а продолжительность времени вычислительного процесса становится очень большим. В то же время, при решении систем уравнений Нернста-Планка и Пуассона область, в которой интегрируемые функции резко возрастают, занимает сравнительно небольшую долю внутри отрезка интегрирования. Так как в обычной реализации метода параллельной стрельбы длины всех подотрезков предполагаются одинаковыми, то наличие узкой области, в которой значения интегрируемых функций достигают больших величин, определяет размерность всей итерационной процедуры. Использование же автоматического разбиения области интегрирования на подотрезки разной длины позволяет значительно (на несколько порядков) сократить размерность процедуры параллельной стрельбы.

Модификация метода основана на разбиении исходного отрезка, на котором решается задача, на подотрезки, длины которых, в отличие от метода параллельной стрельбы с постоянным шагом, вообще говоря, не одинаковы. Величина шага определяется автоматически быстротой изменения интегрируемых функций. Точка wi становится точкой разбиения исходного отрезка на подотрезки, если не выполняется хотя бы одно из условий

, (1)

где

– интегрируемые функции, M – наперед заданная константа.

Кроме того, вводится замена переменных:

;
;
, (2)

где C1 – концентрация противоионов; CА – концентрация коионов; Е – напряженность электрического поля.

Предложенная замена переменных позволяет избежать появления отрицательных значений концентраций (что противоречит их физическому смыслу) и способствует повышению устойчивости итерационного процесса решения краевой задачи.

Для тестирования метода решалась известная краевая задача для системы уравнений Нернста-Планка и Пуассона с малым параметром при старшей производной, описывающая перенос ионов сильного электролита типа NaCl через отдающий противоионы диффузионный слой толщины d.

В новых переменных краевая задача записывается в виде:

(3)

Для повышения надежности вычислительных итераций также использовался метод продолжения по параметру и предложенная А.Н. Тихоновым регуляризация метода Ньютона. В качестве параметра продолжения был выбран малый безразмерный параметр

.

В диссертационной работе получено решение задачи (3) для значений малого параметра

вплоть до 10-7, в то время как использование метода параллельной стрельбы с шагом постоянной длины позволяет получить решение только для
(К.А. Лебедев). Таким образом, за счет модификации метода удалось понизить величину малого параметра, для которого метод дает устойчивое решение, на два порядка.

Показано совпадение найденных решений при e<10-5 с асимптотическими решениями, полученными М.Х. Уртеновым, а при e>10-5 с решениями, полученными К.А. Лебедевым методом параллельной стрельбы с постоянным шагом.

Четвертая глава посвящена исследованию строения двойного электрического слоя (ДЭС) на межфазной границе. Рассматривается перенос ионов сильного электролита типа 1:1 с учетом пространственного заряда как в диффузионном слое, так и в фазе мембраны.

Математическая модель представляет собой совокупность следующих уравнений:

- уравнения Нернста-Планка во всех трех слоях:

, j=1, 2; m=1, 2, 3, (4)

где j=1 для противоионов, j=2 для коионов; m – номер слоя.

- уравнение Пуассона в диффузионных слоях (I), (II) и в мембране:

, (5)

где d – толщина диффузионного слоя, d – толщина мембраны. Остальные обозначения общепринятые.

- на границах диффузионный слой (I)/мембрана (

,
) и мембрана/диффузионный слой (II) (
,
) при использовании уравнения Пуассона задаются условия непрерывности концентраций, напряженности электрического поля и электрического потенциала:

, m=1/2, (6а)