· предположения относительно свойств молока по отношению к определенным технологическим воздействиям все еще остаются элитерическими и не могут служить основой тонких математических расчетов;
· от взаимодействия истинно растворимых составных частей молока во многом зависят свойства молочной сыворотки и тем самым они влияют на стабильность других фаз системы.
Молочный сахар, растворяясь в плазме молока, образует молекулярный раствор. Он содержится в виде гидратных и b-форм, находящихся в равновесии: -лактоза ®b-лактоза. Равновесие между ними зависит от температуры и сдвинуто обычно в сторону b-формы, т. к. последняя более растворима в молоке (Н2О), чем
-форма. Так, при 20°С содержание b-формы в молоке составляет около 60%, а -формы — около 40%. Константа равновесия между ними b-формы
К = 11,8/ 7,4 = 1,59
11,8 - растворимость b-формы в г/100 мл воды, ;
7,4 - растворимость - формы.
Насыщение раствора лактозой и выпадение ее в кристаллической форме наблюдается при сгущении молока и последующем охлаждении сгущенного молока с сахаром, а также при сгущении молочной сыворотки в процессе получения молочного сахара.
Таким образом, в молоке содержится несколько взаимно влияющих друг на друга дисперсных систем с различными физико-химическими видами равновесий, которые обуславливают сложную структуру молока и его чувствительность к физическим, химическим и биологическим воздействиям. Наиболее ясно выражены равновесные отношения между коллоидной системой и истинным раствором, например, равновесие между:
— устойчивостью коллоидных белков ® ионной силой молочной сыворотки;
— коллоидно-растворимым фосфатом Са ® ионизируемым Са
[ Са3(РО4)2]® Са3(РО4)2® 3Са++ + 2НРО43 —
Между другими фазами тоже существует определенная зависимость.
Поэтому перед инженером-технологом стоит задача: выбрать такой щадящий режим отработки молока, чтобы влияние на равновесные отношения в нем было по возможности незначительным.
В то же время нужно с помощью физических методов проводить разделение полидисперсной системы молока на ее главные составные части, не оказывая при этом существенного влияния на свойства компонентов молока. Чем лучше удается разделение на отдельные фазы, тем выше выход готового продукта.
Значительную роль при этом играют свойства отдельных дисперсных систем в молоке.
7. Органолептические свойства молока
1). Изучение вкусовых и ароматических веществ.
2). Нормальный вкус и запах молока и молочных продуктов.
3). Основы сенсорной оценки молока.
Вкусовые и ароматические соединения молока и молочных продуктов изучают для того, чтобы понять причины пороков запаха и вкуса, научиться предупреждать их и тем самым сохранять и улучшать качество продуктов, следить за течением реакций, обусловливающих образование вкусовых и ароматических веществ с целью сознательного управления ферментативными процессами; для изготовления искусственных ароматизаторов полусинтетических пищевых продуктов, а также при разработке стандартов для сенсорного анализа. При этом необходима химическая идентификация и характеристика соединений, вызывающих вкусовые и обонятельные ощущения. Однако содержание ароматических веществ часто бывает ниже минимальных величин, определяемых с помощью анализа, хотя органы чувств отчетливо их воспринимают
Применение современных методов определения вкуса с помощью хромотографии, спектрофотометрии позволяет их идентифицировать: например, при окислении молочного жира образуются карбонильные соединения, придающие окисленный вкус молочного жира; или при самоокислении жира обазуются альдегиды, усиливающие вкус, которые по химическим и физическим свойствам незначительно отличаются друг от друга.
Изучение аромата возможно путем использования газовой хромотографии, особенно он служит для разделения натуральных ароматических комплексов, так как они отличаются летучестью
С помощью хромотографического метода можно зарегистрировать следы в соотношении 1:107 случаях — вещества в концентрации 0,00001%, при этом некоторые из них находятся в пределах сенсорного восприятия. Анализ газохромотограмм показал, что в образовании аромата молочных продуктов участвует большое количество отдельных соединений, которые можно идентифицировать вышеперечисленными методами. Применение инфракрасных спектров позволило определить вещество б-делактон, как вещество, придающее испорченному жиру вкус, напоминающий вкус кокосового ореха.
Свежее сырое молоко характеризуется определенными органолептическими свойствами (показателями): внешним видом, консистенцией, цветом, вкусом и запахом. В соответствии с ГОСТом «Молоко коровье, требования при закупаках» молоко должно быть однородной жидкостью без осадков и хлопьев, от белого до слабо-желтого цвета, без посторонних привкусов и запахов.
Белый цвет и непрозрачность (мутность) молока обусловливают рассеивающие свет коллоидные частицы белков и шарики жира, желтоватый оттенок — растворимый в жире каротин, слабовыраженный (сладковатый), присущий только молоку вкус — лактоза, хлориды, жирные кислоты, а также жир и белки. Приятный едва уловимый запах сырого молока зависит от наличия в нем небольшого количества диметилсульфата, ацетона, летучих жиров, кислот, ацетальдегида и др. карбонильных соединений.
Количество хлоридов в молоке зависит от состояния здоровья животных и ст. лактации содержание диметилсульфида — от вида скармливаемого корма, ацетона — от режимов кормления и состояния здоровья животных, жирных кислот от степени гидролиза жира. Ярко выраженный вкус и запах у молока считается ненормальным явлением. Ароматические и вкусовые вещества адсорбируются прежде всего на белках, с которыми они и попадают в молочные продукты. Поэтому молочный продукт с нормальным вкусом можно получить только из сырого молока, безупречного с точки зрения запаха и вкуса. При обработке и переработке молока происходят физические и химические процессы, которые способствуют образованию новых вкусовых и ароматических веществ из его компонентов.
Так, изменение во вкусе и запахе питьевого молока по сравнению с сырым, происходят за счет образования продуктов распада b-лактоглобулина, которые содержат SH-группы и следы H2S, придающие запах и вкус пастеризации и потребителем это воспринимается вполне нормально. Образованию аромата способствуют не только отдельные химические компоненты, но и физическое состояние продукта. Это можно проследить на примере со сливками. Аромат их изменяется в такой последовательности: сладкие сливки, взбитые сливки — масло, хотя во всех случаях присутствуют одинаковые компоненты и ароматические вещества.
В сливках происходит накопление жира и жировых примесей. Благодаря этому вкусовые качества молочного жира становятся ярче выраженными, т.к. сливки пастеризуют при более высоких t-рах. Тепловая денатурация белков в них происходит интенсивнее и наряду с ароматическими веществами образуется и CH3SH (метилсульфид); (CH3)2S (диметилсульфид) <0,01 мг%; CH3-S-CH2-
О
CH2-C (метиональ).
Н
В образовании вкуса сливок, прежде всего, принимают участие ненасыщенные альдегиды. Они образуются из различных изомеров жирных кислот — С18. Однако более ярко выраженные желаемые изменения аромата происходят при производстве кисломолочных продуктов и при созревании сыра в результате биохимических реакций распада.
Характерный аромат кисломолочных продуктов, йогурта, сливок, кислосливочного масла, диетического кисломолочного творога и др. появляется в результате деятельности молочнокислых бактерий. Он образуется от карбонильных соединений и летучих кислот, которые накапливаются при сквашивании молока в качестве побочных продуктов.
В формировании аромата кисломолочных продуктов участвуют следующие компоненты: кислоты — молочная, лимонная, пропионовая, уксусная, муравьиная; CO2 , ацетальдегид, этиловый спирт, ацетон, ацетоин, диацетил.
Типичный аромат йогурта обусловлен ацетальдегидом; основной компонент аромата кислосливочного масла — диацетил
СН3—С—С—СН3
О О
— это желтая жидкость, при большом разбавлении она обладает приятным запахом; продуцируется ароматообразующими бактериями —стрептоккоками. Накопление его зависит от температуры, величины рН. Исходным веществом служить лимонная кислота и лактоза; причем при добавлении в молоко цитратов увеличивается выход диацетила. Пировиноградная кислота — промежуточный продукт распада лактозы — реагирует с ацетальдегидом, который образуется из пировиноградной кислоты в результате отщепления СО2 и переходит в ацетилмолочную кислоту.
При декарбоксилировании этой кислоты образуется ацетоин.
Накоплению диацетила способствует достаточное количество О2. Это подтверждается на практике тем, что при сквашивании сливок обогащение из воздухом способствует усилению аромата, а при периодическом способе сбивания масла увеличивается содержание диацетила. Диацетил растворяется в воде и поэтому в водной фазе его содержания больше, чем в чистом молочном жире. Только 10-15% диацетила из сливок, попадает в масло. Высокое содержание диацетила в закваске им сливках является условием получения ароматного кислосливочного масла. Ацетона как правило больше, чем диацетила. Добавляя в закваску лимонную кислоту, можно получить 580 мг% диацетила и ацетоина. Определение диацетила основано на взаимодействие р-ра NaOH — дает розовое окрашивание. Это качественная реакция.
Ароматические и вкусовые вещества сыра формируются при созревании — сложном биохимическом процессе, при котором протекают ферментативные реакции: сквашивание с образованием кислот; молочной и пропионовой; распад белков до аминокислот; образование продуктов распада аминокислот, гидролиз жира, появление продуктов распада и окисление свободных жирных кислот.