Четвертичная структура характеризует способ расположения в пространстве отдельных полипептидных цепей в белковой молекуле, состоящей из нескольких таких цепей или субъединиц. Глобулярные белки, обладающие четвертичной структурой, могут содержать большое количество полипептидных цепей, тесно связанных друг с другом в компактную мицеллу, которая ведет себя в растворе как одна молекула.
Так, казеиновая мицелла среднего размера должна состоять из нескольких тысяч полипептидных цепей фракций казеина, определенным образом связанных друг с другом.
Казеин является основным белком молока, его содержание в молоке колеблется от 2,3 до 2,9%. Элементарный состав казеина, %: С - 53,1, Н - 7,1, азот - 15,6, О - 22,6, S - 0,8; Р - 0,8. Он относится к фосфопротеидам, т. е. содержит остатки Н3 РО4 (органически присоединенные к АК-те серину моноэфирной связью (О - Р).
NН ОН
R] СН — СН2 — О — Р = О
С ОН
О
Казеин Серинфосфорная кислота
В свежем молоке ККФК содержится в виде амицелл - это агрегаты частиц, состоящих изтак называемых сублицелл.
a = 8 - 15 НМ, молекулярная масса 25.000-30.000, которые легко разрушаются под действием внешних факторов, частично уже при разбавлении.
Казеин в молоке содержится в виде сложного комплекса казеината кальция с коллоидным фосфатом кальция - так называемого казеинат-кальций-фосфатный комплекс (ККФК), в состав которого входит небольшое количество лимонной кислоты, магния, калия и натрия.
Соединение субмицелл в мицеллы происходит с помощью фосфата кальция и кальциевых мостиков. Казеиновые мицеллы сравнительно стабильны в свежевыдоенном молоке. Они сохраняют свою устойчивость при нагревании молока до относительно высоких температур и при его механической обработке. Стабильность мицелл зависит от содержания в молоке растворимых солей кальция, химического состава казеина, РН молока и других факторов.
3. Фаза истинного раствора
1). Молоко и молочная сыворотка как истинный раствор.
2). Ионо-дисперсное состояние минеральных солей.
3). Молекулярно-дисперсное состояние лактозы.
4). Равновесные отношения.
Истинный раствор — это гомогенные смеси, состоящие из растворенных веществ и растворителя. В истинных растворах растворенные вещества находятся либо в молекулярно-дисперсном, либо в ионо-дисперсном состоянии. Именно молочная сыворотка представляет собой истинный раствор. В ней лактоза и водорастворимые витамины присутствуют в молекулярно распределении, а соли электро-
чески диссоциированы и образуют гидратированные ионы. Вот такое распределение можно представить в виде схем:
Истинный раствор
Растворимые вещества Растворитель
вода
молекулярно- ионно-
дисперсные дисперсные
лактоза, водорастворимые соли в форме
витамины катионов и анионов,
лимонная кислота, дву-
окись углерода ионы водорода
Истинно растворимые составные части придают молочной сыворотке определенные свойства, которые зависят от концентрации составных частей и характерны также и для полидисперсной системы молока, причем эти свойства частично ослабляются или усиливаются в зависимости от коллоидно-дисперсного или эмульгированного состояния присутствующих составных частей. Истинно растворимые частицы обуславливают, в частности, осмотическое давление, осмотические явления снижения температуры замерзания и повышения температуры кипения, а также электропроводность молока. Они оказывают сильное влияние на рефракцию, т. е. способность к преломлению света.
Изменения этих физико-химических свойств можно объяснить колебаниями концентрации истинно растворимых составных частей. Так, в соответствии с законом Вигнера содержание истинно растворимых составных частей в течение периода лактации претерпевает самые незначительные колебания. Указанные изменения служат для распознавания фальсификации молока.
Ионно-дисперсные составные части связаны между собой за счет солевого равновесия молока. И любое изменение нормального первоначального равновесия влияет на растворимость отдельных солей и дестабилизацию белков молока. Это приводит к коагуляции при концентрировании и стерилизации.
Если ионы кальция, например, обуславливают стабильность казеина, то по существующей концентрации их можно было бы предсказать возможные дестабилизирующие воздействия их на казеин, что особенно важно для определения необходимого количества солей-стабилизаторов в производстве сгущенного молока. Однако до сих пор это невозможно, и приходится пользоваться элепсерическими величинами, т.к. не все присутствующие ионы кальция активны, а только некоторые из них, но они мало влияют на другие истинно растворимые составные части.
Молочная сыворотка — это реальный раствор, в противоположность идеальному раствору, которые практически реализуется только при бесконечном разбавлении и в котором растворенные частицы не оказывают взаимного влияния друг на друга, концентрация ионов в молочной сыворотке достигает такой величины, что они взаимно влияют друг на друга благодаря электростатическим силам.
Ионно-дисперсное состояние минеральных солей.
Все соли натрия и калия (хлориды, гидро-, дигидрофосфаты, и цитраты) диссоциированы практически нацело и содержатся в молоке в ионном состоянии, например соли натрия:
NaCl ® Na + + Cl — ; Na2HPO4® 2 Na + HPO4 2—
Na H2PO4 ® Na + H3 PO4 — ; C6 H5 O7 Na3 ® 3 Na + + C6 H5 O7 3 —
В ионно-молекулярном состоянии в молоке содержится часть цитратов и фосфатов кальция и магния:
CaHPO4® Ca 2 + HPO4 2—
Ca(H2PO4)2 ® Ca2 + 2 H2PO4 —
Ca3(PO)2 ® 3 Ca2 + + 2 PO4 3—
(C6H5O7)2 Ca3 ® 3 Ca2 + + 2 C6H5O7 3—
Фосфаты кальция обладают малой растворимостью и незначительной степенью диссоциации, лишь небольшая часть их содержится в виде истинного раствора, а большая — в виде коллоидного раствора. Между ними устанавливается равновесие, например:
nCaHPO4 ® (CaHPO4
истинный раствор коллоидный раствор
nCa3 (PO4)2®[Ca3(PO4)2 ]n
Сдвиг равновесия в ту или другую сторону зависит от рН молока, температуры и других факторов. Соотношение этих форм фосфатов Са играет важную роль в стабилизации белковых частиц молока. Так, фосфаты Са в форме истинного раствора являются источниками образования ионов кальция, от количества (активности) которых зависит размер и устойчивость мицелл казеина при тепловой обработке, а также скорость сычужной коагуляции.
По концентрации отдельных ионов в молоке нельзя судить об их активности, что объясняется действием ионов друг на друга, а также их взаимодействием с дисперсионной средой (водой) и дисперсными фазами других дисперсных систем молока.
В растворе электролитов между ионами действуют силы притяжения и отталкивания. В концентрированных растворах сильные межионные взаимодействия приводят к взаимному связыванию ионов, что влияет на величину осмотического давления, температуру замерзания и электропроводность раствора. Для оценки состояния ионов в растворе электролитов пользуются величинами активности ионов и ионной силы раствора.
Под активностью иона понимают ту условную концентрацию его, в которой он участвует в химических реакциях. Ее можно определить с помощью чувствительных к данному иону электродов или рассчитать по формуле а = fC, где f — коэффициент активности иона; С — концентрация иона. В молоке активность иона определить нельзя, т. к. в нем находится большое количество растворенных веществ и поэтому их рассчитывают по величине ионной силы молока.
Ионную силу раствора вычисляют по формуле, понимая под ней полусумму произведений концентрации всех ионов (катионов и анионов) в растворе Сi на квадрат из заряда.
= 1/2 å Сi2ei
Рассчитать точно ионную силу молока трудно, так как неизвестен состав фосфатов и цитратов кальция, а также степень их диссоциации. Ее рассчитывают условно, принимая, что все анионы фосфатов и цитратов находятся в форме одновалентных ионов Н2РО4— и С6Н7О7—. Ионная сила молока составляет: 0,079-0,089. Сгущение (концентрирование), вызывает снижение активности ионов. При повышенных концентрациях ионов энергия межионного взаимодействия сравнима с тепловой энергией, затем наступают обратные реакции. На основании того, что активность, а не концентрация истинно растворимых составных частей молока оказывает основное влияние на его свойства и что коэффициент активности для молока еще не установлены, можно сделать следующие выводы:
· осмотичное давление или снижение температуры замерзания, зная концентрацию истинно растворимых составных частей, можно рассчитать лишь приблизительно;
· константы диссоциации солей молока также зависят от активности, поэтому в такой смеси, как молоко, они имеют лишь условную силу;
· результаты, полученные при расчетах с учетом констант, как, например, распределение фосфата, на отдельные виды ионов, представляют собой приближенные величины;