Примечательно, что межполушарная передача функций в одних случаях возможна, а в других — нет. По-видимому, это означает, что гомотопические зоны в обоих полушариях загружены неодинаково. Возможно, поэтому при лечении инсульта методом транскраниальной микроэлектростимуляции (подробнее о ней мы расскажем далее) чаще наблюдается и успешнее протекает улучшение речи, чем восстановление двигательной активности руки.
Компенсаторное восстановление функции, как правило, происходит не за счёт какого-либо одного механизма. Практически каждая функция мозга реализуется с участием различных его областей, как корковых, так и подкорковых. Например, в регуляции двигательной активности помимо первичной моторной коры принимают участие ещё несколько дополнительных моторных корковых центров, которые имеют собственные связи с ближними и отдалёнными областями мозга и собственные пути, идущие через ствол головного мозга в спинной мозг. При повреждении первичной моторной коры активация этих центров улучшает двигательные функции.
Кроме того, организация самого пирамидного тракта — наиболее длинного проводящего пути, который состоит из многих миллионов аксонов („отводящих“ отростков) мотонейронов коры и следует к нейронам передних рогов спинного мозга (рис. 2), — предоставляет и другую возможность. В продолговатом мозге пирамидный тракт расщепляется на два пучка: толстый и тонкий. Толстые пучки перекрещиваются друг с другом, и в результате толстый пучок правого полушария в спинном мозге следует слева, а толстый пучок левого полушария — соответственно справа. Мотонейроны коры левого полушария иннервируют мышцы правой половины тела, и наоборот. Тонкие же пучки не перекрещиваются, ведут от правого полушария к правой стороне, от левого — к левой.
У взрослого человека активность мотонейронов коры, аксоны которых проходят по тонким пучкам, практически не выявляется. Однако при поражении, например, правого полушария, когда нарушается двигательная активность мышц шеи и туловища левой стороны, в левом полушарии активируются именно эти мотонейроны, с аксонами в тонком пучке. В результате активность мышц частично восстанавливается. Можно предположить, что этот механизм также задействован при лечении инсультов в острой стадии транскраниальной микроэлектростимуляцией.
Замечательное проявление пластичности мозга — реорганизация повреждённой коры даже по прошествии многих лет с момента возникновения повреждения. Американский исследователь Эдвард Тауб (ныне работающий в университете Алабамы) и его коллеги из Германии Вольфганг Митнер и Томас Элберт предложили простую схему реабилитации двигательной активности у пациентов, перенёсших инсульт. Давность перенесённого поражения мозга среди их пациентов варьировала от полугода до 17 лет. Суть двухнедельной терапии заключалась в разработке движений парализованной руки с помощью различных упражнений, причём здоровая рука была неподвижной (фиксировалась). Особенность этой терапии — интенсивность нагрузки: пациенты упражнялись по шесть часов ежедневно! Когда же мозг пациентов, у которых восстановилась двигательная активность руки, обследовали с помощью функциональной магнитно-резонансной томографии, то оказалось, что в выполнение движений этой рукой вовлекаются множество областей обоих полушарий. (В норме — при непоражённом мозге, — если человек двигает правой рукой, у него активируется преимущественно левое полушарие, а правое полушарие ответственно за движение левой руки.)
Восстановление активности парализованной руки через 17 лет после инсульта — бесспорно, волнующее достижение и яркий пример реорганизации коры. Однако реализовано это достижение высокой ценой — соучастием большого числа областей коры и притом обоих полушарий.
Принцип работы мозга таков, что в каждый момент та или иная область коры может участвовать только в одной функции. Вовлечение сразу многих областей коры в управление движениями руки ограничивает возможность параллельного (одновременного) выполнения мозгом разных задач. Представим себе ребёнка на двухколёсном велосипеде: он восседает на седле, крутит ногами педали, прослеживает свой маршрут, правой рукой фиксирует руль и её указательным пальцем нажимает на звонок, а левой рукой держит печенье, откусывая его. Выполнение такой простой программы быстрого переключения с одного действия на другое непосильно не только для поражённого, но и для реорганизованного мозга. Не умаляя важности предложенного метода реабилитации инсультных больных, хотелось бы заметить, что она не может быть совершенной. Идеальным вариантом представляется восстановление функции не за счёт реорганизации поражённого мозга, а за счёт его регенерации.
Отступление от правил
Обратимся теперь ко второму сценарию: мозг цел, но повреждены периферические органы, а конкретнее — слух или зрение. Именно в такой ситуации оказываются люди, рождённые слепыми или глухими. Давно замечено, что слепые быстрее дискриминируют слуховую информацию и воспринимают речь, чем зрячие. Когда слепых от рождения (и утративших зрение в раннем детстве) исследовали методом позитронно-эмисионной томографии мозга в то время, как они читали тексты, набранные брайлевским шрифтом, оказалось, что при чтении пальцами у них активируется не только соматосенсорная кора, ответственная за тактильную чувствительность, но и зрительная кора. Почему это происходит? Ведь в зрительную кору у слепых не поступает информация от зрительных рецепторов! Аналогичные результаты были получены при изучении мозга глухих: они воспринимали используемый ими для общения знаковый язык (жестикуляцию) в том числе и слуховой корой.
Рис. 3. Операция подсадки зрительного тракта к медиальному коленчатому телу таламуса. Слева показан нормальный ход нервных путей от глаз и ушей, справа — их расположение после операции. (Нервные пути, несущие слуховую информацию, отсекали от медиальных коленчатых тел и на их места подсаживали окончания зрительных нервов, отделённые от латеральных коленчатых тел таламуса. Было уничтожено также нижнее двухолмие в среднем мозге, где переключается часть нервных путей от уха в слуховую кору (не показано на схеме):1 — зрительный тракт,2 — слуховой тракт,3 — латеральные коленчатые тела таламуса,4 — медиальные коленчатые тела таламуса,5 — таламокортикальные пути к зрительной коре,6 — таламокортикальные пути к слуховой коре. |
Как уже отмечалось, сенсорные зоны не связаны в коре напрямую друг с другом, а взаимодействуют лишь с ассоциативными областями. Можно предположить, что переадресация соматосенсорной информации у слепых в зрительную кору и зрительной информации у глухих — в слуховую происходит с участием подкорковых структур. Такая переадресация представляется экономичной. При передаче информации от сенсорного органа в сенсорную область коры сигнал несколько раз переключается с одного нейрона на другой в подкорковых образованиях мозга. Одно из таких переключений происходит в таламусе (зрительном бугре) промежуточного мозга. Пункты же переключения нервных путей от разных сенсорных органов близко соседствуют (рис. 3, слева).
При повреждении какого-либо сенсорного органа (или идущего от него нервного пути) его пункт переключения оккупируют нервные пути другого сенсорного органа. Поэтому сенсорные области коры, оказавшиеся отрезанными от обычных источников информации, вовлекаются в работу за счёт переадресации им иной информации. Но что происходит тогда с самими нейронами сенсорной коры, обрабатывающими чужую для них информацию?
Исследователи из Массачусетсского технологического института в США Джитендра Шарма, Алессандра Ангелуччи и Мриганка Сур брали хорьков в возрасте одного дня и делали зверькам хирургическую операцию: подсаживали оба зрительных нерва к таламокортикальным путям, ведущим в слуховую сенсорную кору (рис. 3). Целью эксперимента было выяснить, преобразуется ли слуховая кора структурно и функционально при передаче ей зрительной информации. (Напомним ещё раз, что для каждого типа коры характерна особая архитектура нейронов.) И в самом деле, это произошло: слуховая кора морфологически и функционально стала похожа на зрительную!
Иначе поступили исследователи Дайана Канн и Ли Крубитцер из Калифорнийского университета. Опоссумам на четвёртый день после рождения удалили оба глаза и через 8–12 месяцев у повзрослевших животных изучали первичные сенсорные области коры и прилегающую к ним ассоциативную зону. Как и ожидалось, у всех ослеплённых животных реорганизовалась зрительная кора: она сильно уменьшилась в размере. Зато, к удивлению исследователей, непосредственно к зрительной коре прилегала структурно новая область X. Как зрительная кора, так и область X содержали нейроны, воспринимавшие слуховую, соматосенсорную или и ту и другую информацию. В зрительной коре оставалось ничтожное число участков, не воспринимавших ни ту, ни другую сенсорную модальность — то есть сохранивших, вероятно, своё первоначальное назначение: восприятие зрительной информации.
Неожиданным оказалось то, что реорганизация коры затронула не только зрительную кору, но и соматосенсорную, и слуховую. У одного из животных соматосенсорная кора содержала нейроны, реагировавшие или на слуховую, или на соматосенсорную, или на обе модальности, а нейроны слуховой коры реагировали либо на слуховые сигналы, либо на слуховые и соматосенсорные. При нормальном развитии мозга такое смешение сенсорных модальностей отмечается только в ассоциативных областях более высокого порядка, но не в первичных сенсорных областях.