Смекни!
smekni.com

Биогенез: мотивы и феномены возникновения жизни (стр. 3 из 3)

Понятно, что в ходе последующего эволюционного отбора зафиксировалось оптимальное молекулярное сочетание между триплетным кодоном и-РНК и точно ему соответствующим антикодоном т-РНК с прикреплённой кодируемой аминокислотой. Но самое главное в эволюционном плане, это закрепление специфического связывания конкретного адаптера с единственной аминокислотой. Интересно, что само по себе данное соединение не претерпело каких-либо структурных изменений. Поскольку, кроме как через сложно-эфирную связь между карбоксилом аминокислоты и гидроксилом концевого рибозного остатка т-РНК, их между собой оптимально и не соединишь. Но поскольку данная ковалентная связь биологически неспецифична, то природа „нашла“ изящное и уникальное решение. Была создана система специфического катализа с функцией „узнавания“, опосредованной трёхмерной структурой макромолекулы т-РНК. Неспецифическая связь могла быть реализована только при оптимальном пространственном совпадении специфической области распознавания т-РНК с определённым и строго характерным только для конкретной аминокислоты ферментом аминоацил-т-РНК-синтетазой. В итоге, при подобном сочетании, образовывалась определённая аминоацил-т-РНК с характерным только для неё антикодоном в виде определённого триплета нуклеотидов, соответствующих кодируемому кодону на и-РНК. В принципе, антикодоновые „участки связывания“ аминоацил-т-РНК могли и сами выступать в роли матрицы, что допустимо в плане соблюдения физико-химических законов. Это могло происходить путём формирования собственного генетического кода с помощью репликативной сборки комплементарной последовательности триплетов из отдельных свободных нуклеотидов внешнего окружения. Что нисколько не нарушает постулатов центральной догмы молекулярной биологии об одностороннем пути передачи генетической информации от нуклеиновых кислот к белкам, а не наоборот. Действительно, белки не могут быть матрицей для нуклеотидов, но свободным аминокислотам ничто не мешает таким образом снять с себя генетический слепок. И если при дальнейшем биосинтезе, матрица из случайной последовательности аминокислот приводила к образованию пептидов с нужными биологическими эффектами, то подобный способ обратной трансляции позволял закрепить опыт биогенетически удачного образования макромолекулы.

По всей вероятности, появление специфических аминоацил-РНК и стало тем прорывом, или по другому — инициацией собственно возникновения жизни в её самой древней форме, давшей начало уже биологической эволюции на нашей планете. Подобный вывод следует из того, что последующее поэтапное развитие было направлено на отбор спонтанно возникающих структурных элементов наиболее оптимальных для биологической системы. Или на эволюционное закрепление удачных мутаций на очередных стадиях филогенеза биологической системы, делая её всё более и более совершенной. В свою очередь, появлению удачных структур способствовал как спонтанный синтез пептидов с выстраиванием генетической матрицы „под себя“, так и наоборот, уже готовые случайные фрагменты РНК или ДНК, с удачной для вновь синтезируемых пептидов триплетной последовательностью нуклеотидов. Дополнительно, повышению вероятности случайного возникновения биогенетически ценных молекул мог способствовать феномен вырожденности генетического кода, то есть когда отдельная аминокислота кодируется группой разных кодонов, но при этом каждый кодон кодирует только одну аминокислоту.

Список литературы

Спирин А.С. Биосинтез белков, мир РНК и происхождение жизни // Вестник РАН. 2001. № 4. С. 320-328.

Скулачёв В.П. Эволюция биологических механизмов запасания энергии // Статьи Соросовского Образовательного журнала. (Биология) 1997 http://www.pereplet.ru/obrazovanie/stsoros.

Чернавский Д.С. Проблема происхождения жизни и мышления с точки зрения современной физики // Успехи физических наук. 2000. № 2. С. 157-183.

Chetverina H.V., Demidenko A.A., Ugarov V.I., Chetverin A.B. Spontaneous rearrangements in RNA sequences // FEBS Letters. 1999. V. 450. P. 89-94.

Спирин А.С. Принципы функционирования рибосом // Соросовский Образовательный Журнал. 1999. № 4. С. 2-9.