Смекни!
smekni.com

Информационное управление клеточными процессами (стр. 9 из 9)

1) на уровне источников углерода: продукты катаболизма могут быть исходными субстратами анаболических реакций;

2) на энергетическом уровне: в процессе катаболизма образуются АТФ и другие высокоэнергетические соединения; анаболические процессы протекают с их потреблением; 3) на уровне восстановительных эквивалентов: реакции катаболизма являются в основном окислительными; процессы анаболизма, наоборот, потребляют восстановительные эквиваленты” [10].

Все ступенчатые процессы находятся под генетическим контролем. Сотни протекающих в операционных блоках химических реакций программно организованы с помощью ферментов – молекулярных автоматов, в виде множества различных последовательностей идущих друг за другом операций (реакций). В блоке синтеза молекулярной элементной базы с использованием предшественников идут управляемые процессы биосинтеза аминокислот, нуклеотидов, простых сахаров и жирных кислот.

Из структурной схемы видно, что живая клетка способна сама создавать молекулярную элементную базу для построения своих систем или получать ее из внешней среды. Аминокислоты и нуклеотиды в основном используются в матричных процессах биосинтеза белков и нуклеиновых кислот.

В блоке синтеза структурных и функциональных макромолекул клетки под управлением своих программ идут процессы биосинтеза и процессинга сложных макромолекул белков, ферментов, компонентов мембран и органелл и т. п., которые, после транспортировки, войдут составной частью в клеточные ансамбли, и будут работать в разных клеточных структурах. А создаваемые различными биопроцессорными системами информационные компоненты (рРНК, тРНК, иРНК, белки, ферменты т. д.) – это, по существу, и есть тот программно-аппаратный парк, который работает в различных по своему назначению операционных блоках. Живая клетка на любом отрезке своего развития всегда имеет необходимый и достаточный набор программных и программируемых молекулярно-аппаратных средств, необходимый для обеспечения управления всеми своими химическими процессами и биологическими функциями. Поэтому главной задачей генетической памяти состоит в том, чтобы передать необходимые данные и программную информацию биологическим молекулам и структурам клетки. А загруженная в биомолекулы структурная и программная информация является основой их информационного и функционального поведения в общей системе управления живой клетки.

В связи с этим, все белковые и другие биомолекулы клетки представляют собой не только потоки биоорганического вещества, но они же образуют и информационные потоки и сети, контролирующие различные биохимические и молекулярные функции живой клетки (организма). Программирование этих потоков и сетей обеспечивается экспрессией десятков и сотен различных генов, объединённых между собой скоординированными управляющими и регуляторными воздействиями. А если учесть, что различные ферментативные системы, состоящие порой из десятков и сотен ферментов, участвуют в организации множества различных последовательностей идущих друг за другом химических реакций, которые в совокупности составляют клеточный метаболизм, то можно констатировать, что управление химическими процессами и биологическими функциями клетки осуществляется молекулярными информационными потоками и сетями “автоматизированного” управления.

Отсюда, как следствие, вытекает и тот факт, что все клеточные процессы управляются, регулируются и взаимно координируются той программной информацией, которая (с помощью генетической информации и элементной базы) загружена в аппаратную систему клетки, то есть находится в функциональных биомолекулах и структурах клетки! Каждая из управляющих систем клетки (операционная система, управляющие системы катаболизма, биосинтеза элементной базы, биосинтеза макромолекул клетки и т. д.), состоящая из генетической памяти, комплекса локальных биопроцессорных устройств и выходного управляющего звена – молекулярных биологических автоматов и манипуляторов, воспринимает информацию о ходе химических превращений, об эффективности протекающих процессов, об изменении внешних и внутренних физических и химических факторов и, в зависимости от результата, корректирует управляющие воздействия.

Системы запрограммированы на четкое взаимодействие управляющих и управляемых подсистем (и друг с другом), на оптимальное прохождение всех биохимических и энергетических процессов. Живая клетка в любое время имеет необходимый и достаточный набор программных, энергетических и функциональных средств для поддержания и обновления своих структур, обеспечения процессов развития и жизнедеятельности.

В настоящее время накоплен огромнейший экспериментальный и теоретический материал по изучению живой материи, который рассредоточен по различным областям и дисциплинам молекулярных биологических наук.

Теперь уже стало очевидным, что чрезвычайная детализация изучаемых биохимических процессов ведёт только к бесконечной лавине все новых и новых проблем и вопросов. Это не приводит ни к осознанию сущности живой материи, ни к пониманию причин и механизмов её функционирования. По мнению автора статьи, в молекулярной биологии наступила пора переосмысления имеющихся знаний и сведений в пользу новой, альтернативной науки – молекулярной биологической информатики. О необходимости такого шага свидетельствует вся история возникновении и развития жизни на Земле, которая повсеместно связана с наследственной информацией и действующей на её основе универсальной мультипроцессорной молекулярно-биологической системы управления живой клетки.

Список литературы

1. А. Ленинджер. Основы биохимии. Пер. с англ. в 3-х томах – М: Мир, 1985.

2. Ю. Я. Калашников. Ферменты и белки живой клетки – это молекулярные биологические автоматы с программным управлением. Дата публикации: 30 июня 2006г., источник: SciTecLibrary.ru; Сайт: , дата публикации: 13.12.2006г.

3. Ю. Я. Калашников. Кодирование и программирование биологических молекул. Дата публикации: 01.01.2007г., источник: http://new-idea.kulichki.com/

4. Ю. Я. Калашников. Единство вещества, энергии и информации – основной принцип существования живой материи. Дата публикации: 30 июня 2006г., источник: SciTecLibrary.ru; Сайт: http://new-idea.kulichki.com/, дата публикации: 07.12.2006г.

5. Ю. Я. Калашников. Аспекты молекулярной биохимической логики и информатики. Дата публикации: 05.12.2006г., источник: http://new-idea.kulichki.com/

6. Ю. Я. Калашников. Концепция информационной молекулярно-биологической системы управления. – М., 2005.–88с. – Депонир. в ВИНИТИ РАН 14.04.05, №505-В2005

7. П. Кемп, К. Армс. Введению в биологию. Пер. с англ. – М: “Мир”, 1988.

8. Б. Альбертс, Д. Брей и другие. Молекулярная биология клетки. Пер. с англ., Том 2 – М: “Мир”, 1994.

9. Ф. Айала, Дж. Кайгер. Современная генетика. Пер. с англ. в 3-х томах – М: Мир, 1988.

10. А. А. Анисимов, А. Н. Леонтьева и др. Основы биохимии. – “Высшая школа”, 1986. Дата публикации: 5 марта 2007