Жданова Т. Д.
Соприкасаясь с разнообразной и энергичной деятельностью мира насекомых можно получить удивительные впечатления. Казалось бы, эти создания беспечно летают и плавают, бегают и ползают, жужжат и стрекочут, грызут и несут. Однако все это делается не бесцельно, а в основном с определенным намерением, согласно заложенной в их организм врожденной программе и приобретенному жизненному опыту. Для восприятия окружающего мира, ориентации в нем, осуществления всех целесообразных действий и жизненных процессов животные наделены очень сложными системами, в первую очередь нервной и сенсорной.
Что общего у нервной системы позвоночных и беспозвоночных?
Нервная система представляет из себя сложнейший комплекс структур и органов, состоящих из нервной ткани, где центральным отделом является мозг. Главной структурной и функциональной единицей нервной системы является нервная клетка с отростками (по-гречески нервная клетка – нейрон).
Нервная система и мозг насекомых обеспечивают: восприятие с помощью органов чувств внешнего и внутреннего раздражения (раздражимость, чувствительность); мгновенную переработку системой анализаторов поступающих сигналов, подготовку и осуществление адекватной ответной реакции; хранение в памяти в закодированном виде наследственной и приобретенной информации, а также мгновенное извлечение ее по мере необходимости; управление всеми органами и системами организма для его функционирования как единого целого, уравновешивания его со средой; осуществление психических процессов и высшей нервной деятельности, целесообразное поведение.
Организация нервной системы и мозга позвоночных и беспозвоночных животных настолько различна, что их сопоставление на первый взгляд представляется невозможным. И в тоже время для самых разнообразных видов нервной системы, принадлежащих, казалось бы, и совсем «простым» и «сложным» организмам, характерны одинаковые функции.
Совсем крошечный мозг мухи, пчелы, бабочки или другого насекомого позволяет ему видеть и слышать, осязать и чувствовать вкус, передвигаться с большой точностью, больше того – летать, пользуясь внутренней «картой» на значительные расстояния, осуществлять коммуникационное взаимодействие между собой и даже владеть своим «языком», обучаться и применять в нестандартных ситуациях логическое мышление. Так, мозг муравья гораздо меньше булавочной головки, но это насекомое издавна считали «мудрецом». При сравнении не только с его микроскопическим мозгом, но и с непостижимыми возможностями одной нервной клетки человеку стоит стыдиться своих самых современных компьютеров. А что об этом может сказать наука, например, нейробиология, изучающая процессы рождения, жизни и смерти мозга? Смогла ли она разгадать тайну жизнедеятельности мозга – этого самого сложного и таинственного из явлений, известных людям?
Первый нейробиологический опыт принадлежит древнеримскому врачу Галену. Перерезав у свиньи нервные волокна, с помощью которых мозг управлял мышцами гортани, он лишил животное голоса – оно тотчас онемело. Это было тысячелетие назад. Но далеко ли с тех пор ушла наука в своих познаниях о принципе работы мозга? Оказывается, несмотря на огромный труд ученых, принцип работы даже одной нервной клетки, так называемого «кирпичика», из которого построен мозг, человеку так и не известен. Нейробиологи многое понимают из того, как нейрон «ест» и «пьет»; как получает необходимую для своей жизнедеятельности энергию, переваривая в «биологических котлах» необходимые вещества, извлеченные из среды обитания; как затем этот нейрон посылает соседям самую различную информацию в виде сигналов, зашифрованную либо в определенной серии электрических импульсов, либо в разнообразных комбинациях химических веществ. А что потом? Вот получила нервная клетка конкретный сигнал, и в ее глубинах началась в содружестве с другими клетками, образующими мозг животного, уникальная деятельность. Идет запоминание пришедшей информации, извлечение из памяти нужных сведений, принятие решений, отдача приказов мышцам и различным органам и т.д. Как все происходит? Это ученым точно до сих пор не известно. Ну, а поскольку непонятно, как действуют отдельные нервные клетки и их комплексы, то не ясен и принцип работы целого мозга, даже такого маленького, как у насекомого.
Работа органов чувств и живых «приборов»
Жизнедеятельность насекомых сопровождается обработкой звуковой, обонятельной, зрительной и другой сенсорной информации – пространственной, геометрической, количественной. Одной из многих загадочных и интересных особенностей насекомых является их умение с помощью собственных «приборов» точно оценивать ситуацию. Наши знания об этих устройствах незначительны, хотя они широко используются в природе. Это и определители различных физических полей, которые позволяют предсказывать землетрясения, извержения вулканов, наводнения, изменения погоды. Это и чувство времени, отсчитываемое внутренними биологическими часами, и чувство скорости, и способность к ориентации и навигации и многое другое.
Свойство всякого организма (микроорганизмов, растений, грибов и животных) воспринимать раздражения, исходящие из внешней среды и от их собственных органов и тканей, называется чувствительностью. У насекомых, как и у других животных со специализированной нервной системой, существуют нервные клетки с высокой избирательной способностью к различным раздражителям – рецепторы. Они могут быть тактильными (реагирующими на прикосновения), температурными, световыми, химическими, вибрационными, мышечно-суставными и т.д. Благодаря своим рецепторам насекомые улавливают все разнообразие факторов внешней среды – различные вибрации (большой диапазон звуков, энергию излучения в форме света и тепла), механическое давление (например, силу тяжести) и другие факторы. Рецепторные клетки расположены в тканях либо одиночно, либо собраны в системы с образованием специализированных сенсорных органов – органов чувств.
Все насекомые прекрасно «понимают» показания своих органов чувств. Одни из них, как органы зрения, слуха, обоняния, относятся к дистанционным и способны воспринимать раздражение на расстоянии. Другие, как органы вкуса и осязания, являются контактными и реагируют на воздействие при непосредственном соприкосновении.
Насекомые в массе своей наделены превосходным зрением. Их сложно устроенные фасеточные глаза, к которым иногда добавляются и простые глазки, служат для распознания различных объектов. Некоторые насекомые обеспечены цветовым зрением, целесообразными приборами ночного видения. Интересно, что глаза насекомых – это единственный орган, подобие которого есть у других животных. В тоже время органы слуха, обоняния, вкуса и осязания такого подобия не имеют, но, тем не менее, насекомые прекрасно воспринимают запахи и звуки, ориентируются в пространстве, улавливают и излучают ультразвуковые волны. Тонкое обоняние и вкус позволяют им находить пищу. Разнообразные железы насекомых выделяют вещества для привлечения собратьев, половых партнеров, отпугивания соперников и врагов, а высокочувствительное обоняние способно улавливать запах этих веществ даже за несколько километров.
Многие в своих представлениях связывают органы чувств насекомых с головой. Но оказывается структуры, ответственные за сбор информации об окружающей среде, находятся у насекомых в самых различных частях тела. Они могут определять температуру предметов и пробовать пищу на вкус ногами, определять присутствие света спиной, слышать коленками, усами, хвостовыми придатками, волосками тела и т.д.
Органы чувств насекомых входят в состав сенсорных систем – анализаторов, пронизывающих сетью практически весь организма. Они получают множество различных внешних и внутренних сигналов от рецепторов своих органов чувств, анализируют их, формируют и передают «указания» различным органам для осуществления целесообразных действий. Органы чувств в основном составляют рецепторный отдел, который расположен на периферии (концах) анализаторов. А проводниковый отдел образован центральными нейронами и проводящими путями от рецепторов. В мозге есть определенные участки для обработки информации, поступающей от органов чувств. Они составляют центральную, «мозговую», часть анализатора. Благодаря такой сложной и целесообразной системе, к примеру зрительного анализатора, производится точный расчет и управление органами движения насекомого.
Накоплены обширные знания об удивительных возможностей сенсорных систем насекомых, однако объем книги позволяет привести лишь некоторые из них.
Органы зрения
Глаза и вся сложнейшая зрительная система – это удивительный дар, благодаря которому животные способны получать основную информацию об окружающем мире, быстро распознавать различные объекты и оценивать возникшую ситуацию. Зрение необходимо насекомым при поиске пищи, чтобы избегать хищников, исследовать объекты интереса или обстановку, взаимодействовать с другими особями при репродуктивном и общественном поведении и т.д.
Насекомые оснащены самыми разными глазами. Они могут быть сложными, простыми или добавочными глазками, а также личиночными. Наиболее сложные – фасеточные глаза, которые состоят из большого числа омматидиев, образующих на поверхности глаза шестигранные фасетки. Омматидий по своей сути – это крошечный зрительный аппарат, снабженный миниатюрной линзой, светопроводящей системой и светочувствительными элементами. Каждая фасетка воспринимает лишь небольшую часть предмета, а все вместе они обеспечивают мозаичное изображение предмета целиком. Фасеточные глаза, свойственные большинству взрослых насекомых, расположены по сторонам головы. У отдельных насекомых, например у стрекозы–охотницы, быстро реагирующей на передвижение добычи, глаза занимают половину головы. Каждый ее глаз построен из 28 000 фасеток. Для сравнения у бабочек их 17 000, у комнатной мухи – 4 000. Глазков на голове у насекомых может быть два или три на лбу или темечке, и реже – по ее сторонам. Личиночные глазки у жуков, бабочек, перепончатокрылых во взрослом состоянии заменяются на сложные.