Смекни!
smekni.com

Опять актуален вопрос: что такое ген? (стр. 2 из 3)

Оперон — несколько генов,

транскрибируемых как единая полистронная РНК

Если несколько ферментов участвуют в выполнении какой-то одной определённой задачи, например, последовательно катализируют цепь биохимических реакций, расщепляющих, например, лактозу или синтезирующих, например, лейцин или триптофан, то очевидно, что синтез каждого из этих ферментов должен быть скоординирован с синтезом других ферментов этого метаболического, иначе единый метаболический путь не будет работать нормально. У прокариот такая координация достигается тем, что гены таких ферментов расположены рядом (без „пробелов“, останавливающих транскрипцию) и транскрибируются они с единой регуляторной зоны (в которой расположены промотор и оператор) в виде полицистронной мРНК. Такая организация регуляторных и структурных генов названа опероном.

Чтобы оперон заработал РНК полимераза должна присоединиться к промотору, а репрессор, под действием определённого регуляторного сигнала, отсоединиться от оператора и, тем самым, открыть РНК полимеразе путь для транскрипции структурных генов. В геноме бактерий расположены тысячи оперонов, в которых, в свою очередь содержатся структурные гены, кодирующих белки (или стабильные РНК), участвующие в выполнении какой либо единой функции. Например, в геноме кишечной палочки содержится 2584 оперона, среди них 73% оперонов содержат только один цистрон, 16% — 2 цистрона, 4,6% — три цистрона, 6% — 4 и более цистронов. В 1965 г Ф. Жакоб, Ж. Моно и А. Львов за открытие оперонов были удостоены Нобелевской премии.

Наверное, предполагали генетики, гены и геномы эукариот устроены так же, как и гены прокариот. Но то что, обнаружилось — было ошеломляющим.

Мозаичная структура эукариотных генов

Оказалось, что внутри генов эукариот всегда есть участки, которые информационного смысла не имеют и не кодируют ни полипептидов, ни стабильных РНК. Эти участки назвали интронами. Термин интрон образован из английских слов — intervening zone — зона, „перемежающая, смысловую последовательность гена“. А те участки, которые смысл имеют, т. е кодируют, были названы экзонами. Экзон — от англ. expressing zone — экспрессируемая зона гена. Экзоны, как оказалось, кодируют так называемые части белковых молекул — модули или домены (компактные структуры), играющие важную роль в функционировании белковых молекул. Белковые молекулы состоят из нескольких модулей. Как правило, экзон кодирует участок полипептидной цепи длиной 30–40 аминокислот. А большинство интронов имеет длину от 40 до 125 нуклеотидных пар. Открытие мозаичной структуры эукариотных генов было сделано в 1977 г группами учёных, возглавляемых американскими исследователями Ричардом Робертсом и Филиппом Шарпом.

Но как работает такой ген? Состоящий из мозаики экзонов и интронов? А вот как:

Спеолдрласитьцйсиитбцнгорлю

Бессмысленное слово, не так ли? Но если из него удалить все интроны? Тогда получиться сплайсинг. Именно этот процесс и необходим для реализации функции эукариотного гена — все не смысловые (не кодирующие) участки должны быть удалены. Но не из гена, а из комплементарной ему РНК, которая должна быть синтезирована РНК полимеразой. Термин „сплайсинг“ в буквальном переводе с английского означает „соединение“. После вырезания интронов экзоны должны быть соединены.

Итак, чтобы эукариотный ген заработал необходимо создать (путём транскрипции) комплементарную РНК — копию мозаичного гена, состоящую из экзонов и интронов, из РНК интроны удалить, а экзоны объединить. Полученный окончательный транскрипт (теперь приобретший смысл) уже может быть использован для реализации его функции, для трансляции, например. Что важно, интроны из первичного транскрипта удаляются по очереди, а не все сразу. Вот так:

Спеолдрласитьцйсиитбцнгорлю

Спласитьцйсиитбцнгорлю + еолдр

Сплайсиитбцнгорлю + еолдр + ситьц

Сплайсингорлю + еолдр + ситьц + итбц

Сплайсинг + еолдр + ситьц + итбц + орлю

Таким образом, если в гене есть N интронов, то для сплайсинга необходимо N стадий вырезания интронов и сшивания экзонов. И если в какой-нибудь стадии произойдёт ошибка, например, при вырезании интронов будет вырезан один нуклеотид из экзона — это приведёт к тому, что ген свою функцию не выполнит и „наказанием“ за такую неточность будет или смерть, или тяжёлое нарушение жизнеспособности, что в ряду поколений кончится тем же летальным исходом.

Для чего же такая умопомрачительная, весьма дорогостоящая и опасная, в случае ошибок, сложность? А для

Аищалцуюофеьолтжиуекеруюнабюутхаипровбюуньцфыйооопс

В этом „гене“ 12 экзонов и 12 интронов. Если в 12 стадий удалить поочерёдно все интроны, то получится название особого типа сплайсинга:

Альтернативный + ища + цуюофе + ол + жиу + ке + ую + бюу + ха + про + бюу + ьцф + ооопс

И вот в чём смысл альтернативного сплайсинга: некоторые, чётко определённые экзоны вырезаются вместе с интронами. И тогда из

Аищалцуюофеьолтжиуекеруюнабюутхаипровбюуньцфыйооопс

Получится:

Альтернативный + ища + цуюофе + ол + жиу + ке + ую + бюу + ха + про + бюу + ьцф + ооопс

Альт + ища + цуюофе + ол + жиуекеруюнабюутхаипровбюуньцфыйооопс

нативный + Аищалцуюофеьолтжиуекерую + бюу + ха + про + бюу + ьцф + ооопс

наивный + Аищалцуюофеьолтжиуекерую + бюутха + про + бюу + ьцф + ооопс

левый + Аища + цуюофеьолтжиу + керуюнабюутхаипро + бюуньцф + ооопс

лев + Аища + цуюофеьолтжиу + керуюнабюутхаипро + бюуньцфыйооопс

В итоге, из одного, казалось бы, бессмысленного слова, получено шесть вполне осмысленных. А если это слово — ген?

Один ген — множество белков

Действительно, путь стыковки экзонов, принадлежащих одному гену, может быть множественным. Некоторые экзоны могут удаляться вместе с интронами. Такой альтернативный сплайсинг приводит к тому, что один и тот же ген может кодировать семейство структурно схожих, но функционально разных белков. На данный момент известное максимальное количество разных белков, которое может кодировать один ген, составляет около 40 000! (Сумма прописью — сорок тысяч). Например, ген дрозофилы, который кодирует один из белков рецептора, аксона за счёт альтернативного сплайсинга может приводить к образованию 38016 различных информационных РНК. Этот ген содержит 95 альтернативных экзонов. Но все ли гены экспрессируются за счёт альтернативного сплайсинга? Согласно текущим знаниям, по крайней мере, 74% генов человека работает с помощью альтернативного сплайсинга!

Теперь самое время задаться вопросом: что такое ген?

Ген (эукариотный) это длинная и преимущественно случайная, не кодирующая последовательность нуклеотидов, в которой расположены участки (экзоны), способные после вырезания из транскрипта этого гена и их объединения в строго определённой очерёдности, кодировать определённую функцию.

Особо отметим, что при альтернативном сплайсинге порядок расположения экзонов не нарушается. В окончательном варианте сплайсированной РНК некоторые экзоны могут присутствовать или отсутствовать, но местами они не меняются. Например, в окончательно сплайсированной РНК экзоны 1–2–3–4–5–6 могут быть в последовательности 2–4–6, но не в последовательностях 4–2–6 или 6–4–2. Таким образом, из одного и того же транскрипта гена, используя разные варианты распознавания, вырезания и соединения разных экзонов можно получить множество разных изоформ белков, у которых будут общими некоторые аминокислотные последовательности, но которые будут отличаться по своим функциональным свойствам. И то, что сначала наивно полагали бессмысленным — интроны, перемежающие гены, на самом деле оказалось весьма эффективным и экономичным способом кодирования множества смыслов за счёт ограниченного числа знаков. Правда, это привело к значительному усложнению правил обнаружения этих смыслов. Путь альтернативного сплайсинга в большой степени определяется регуляторными сигналами клетки, характеризующими её состояние. В ответ на изменение физиологической ситуации из одного и того же гена реализуются разные функции.

Весьма принципиально, что при эволюционном усложнении организмов среднее количество интронов, приходящихся на один ген, возрастает. На основе статистического анализа сделаны выводы, что размер генома коррелирует с общей длиной интронов, содержащихся в гене данного вида; интроны беспозвоночных короче, чем интроны генов человека, а интроны дрожжей короче, чем интроны беспозвоночных. По мере усложнения организмов увеличивается и длина интронов. В общем, в гене суммарная длина интронов может превосходить суммарную длину экзонов в десятки и сотни раз.

Если секвенирование (определение нуклетотидной последовательности, от англ. sequence — последовательность) эукариотных генов привело к ошеломляющему открытию их мозаичной структуры, то массовое секвенирование целых геномов разных организмов привело к результатам просто изумляющим. У мыши, человека у рыбы фугу (рыба шар) количество генов практически одинаково — 30000 — 40000. Что же тогда определяет эволюционную сложность?

Более того, если сравнивать между собой кодирующие последовательности (экзоны) в геномах мыши и человека, то окажется, что они идентичны на 99%! Почему же мы так не похожи на мышей?

Может быть и потому, что несмотря на то, что наши гены похожи на мышиные, у нас альтернативный сплайсинг идёт или по другому пути, или более множественный. Или и то и другое одновременно. Ведь не зря же по мере прогрессивной эволюции среднее количество интронов (а значит, и экзонов), приходящихся на один ген, возрастает? Ведь это расширяет спектр белков, потенциально кодируемых одним геном. Не так ли? И в результате из-за разного альтернативного сплайсинга из почти одних тех же генов получается или мышь, или шимпанзе, или тот, кто в данный момент читает эти строки.