Смекни!
smekni.com

Смысл эволюции и эволюция смысла (стр. 2 из 5)

Сотри случайные черты

И ты увидишь — мир прекрасен.

Блок

Для реализации (экспрессии) функции гена все его „не смысловые“ участки должны быть удалены. Для этого возможны два пути. Первый — удалить интроны навсегда, „вырезать“ их (делетировать), а экзоны соединить. Второй — создать (путём транскрипции) копию мозаичного гена, состоящего из экзонов и интронов, исходную матрицу не изменять, а из копии интроны удалить, а экзоны объединить. Полученный окончательный транскрипт (теперь приобретший смысл) использовать для реализации его функции. Прокариоты выбрали первый путь. В их генах (за малыми особыми исключениями) интронов нет. Выбравшие этот простой и экономный путь так и остались безъядерными одноклеточными микроорганизмами. Прогрессивная эволюция для них стала невозможной. (Прогрессивная эволюция — изменения, сопровождающиеся усложнением, образованием новых элементов (органов, тканей, костей и др.) и увеличением количества связей между ними, сложность понимается как complexity).

Второй путь, при котором бессмысленные интроны сохраняются в гене, но удаляются из его транскрипта, был назван сплайсингом, он реализуется у всех эукариотных организмов.

Но неужели интроны, суммарная длина которых в гене может в десятки и более раз превосходить длину его экзонов, действительно бессмысленны? Каков был механизм образования мозаичных генов? Попытки реконструировать этот процесс приводят к представлению о том, что в составе древних самовоспроизводящихся молекул (или их агрегатов, или древнейших клеток) присутствовали: во-первых, „генератор случайных чисел“, механизм, который синтезировал протяжённые случайные последовательности нуклеотидов (букв), и, во-вторых, механизм, разрезавший их на случайные фрагменты и в разных комбинациях соединявший некоторые из них. А затем беспристрастный естественный отбор оценивал результат. Если результат соединения фрагментов транскрипта улучшал самовоспроизведение, такой мозаичный ген сохранялся, если нет — исчезал с лица Земли. Как свидетельствует компьютерный анализ большого массива эукариотных генов — они кодируют модули, из которых состоят белки, образно говоря, имеют субсмысл [11]. (Модули белков — последовательности аминокислот, способные к образованию компактных структур — доменов, которые важны для реализации функции белка)

В целом, текущее представление о происхождении генов — они происходили путём стыковки экзонов — exon shuffling [12]. Сначала случайно возникли потенциальные части слова — „слоги“, потом они случайно соединялись и когда возникал смысл — путь стыковки слогов фиксировался (запоминался). Однако путь стыковки экзонов, принадлежащих одному гену, как неожиданно оказалось, может быть множественным, некоторые экзоны могут удаляться вместе с интронами. Такой альтернативный сплайсинг приводит к тому, что один и тот же ген может кодировать семейство схожих, но разных белков. На данный момент известное максимальное количество разных белков, которое может кодировать один ген, составляет около 40 000. [13].

И теперь самое время задаться постоянно актуально вопросом: что такое ген?

Ген (эукариотный) — это длинная и преимущественно случайная, не кодирующая последовательность нуклеотидов, в которой расположены участки, способные после вырезания из копии этого гена (транскрипта) и их объединения в строго определённой очерёдности, кодировать (или непосредственно выполнять) определённую функцию. Теперь представьте себе, что текст — это случайная последовательность букв, среди которых иногда расположены участки, которые после распознавания, выделения и соединения приобретают смысл. Более того, из одного и того же текста, используя разные варианты распознавания, выделения и соединения разных участков, можно получить много разных смыслов. Итак, то, что мы наивно полагали бессмысленным — интроны, перемежающие гены, на самом деле оказалось весьма эффективным и экономичным способом кодирования множества смыслов за счёт ограниченного числа знаков. Правда, это привело к значительному усложнению правил обнаружения этого смысла. Путь сплайсинга в большой степени определяется регуляторными сигналами клетки, характеризующими её состояние. В ответ на изменение ситуации из одного и того же гена образуются разные смыслы. У бактерий всё просто — во-первых — что написано, все знаки подряд и понимай, во-вторых, ситуация изменилась — включился другой, для неё специально предусмотренный ген.

И, самое поразительное и обнаруженное совсем недавно: точечные мутации (случайные изменения нуклеотидов) в экзоне могут приводит к изменению пути его стыковки с другими экзонами, иначе говоря, изменение буквы в слоге может вести к изменению пути его соединения с другими слогами. Случайная точечная („буквенная“) мутационная изменчивость приводит к изменчивости более высокого уровня — к изменчивости пути комбинированеия субсмысловых блоков. Разумеется, это в значительной мере уменьшает время случайного перебора, необходимое для образования новых функций [14].

Как же идёт „прогрессивная эволюция“ мозаичных эукариотных генов? Самое очевидное предположение — путём увеличения степени их мозаичности…Чем более примитивен организм — тем меньше в его „типичном“ гене должно быть экзонов и интронов. Именно так и пишут в учебниках [15]. А как же иначе? Ведь у примитивных одноклеточных дрожжей 95% всех генов вообще не мозаичные (интронов не содержат), у грибов большинство генов имеют по 2–3 интрона, у червя, в среднем, по 4 интрона, у млекопитающих по 7–8.

А организмы, которые жили миллиарды лет тому назад, в те „баснословные года“, когда древо жизни ещё не расщепилось на царства животных и растений? Какие гены имел организм, который был в точке ветвления? Ответ удивительный. Почти такие же сложные, как у „венца“ эволюции. Общий предшественник червей, насекомых и хордовых имел в генах такое же количество интронов, какое сейчас содержится в человеческих генах [16,17]. В процессе эволюции происходили массовые утраты интронов, что и привело к тем средним количествам интронов, о которых справедливо говорится в учебниках.

Какой же молекулярно-генетический „Большой Взрыв“ на ранних стадиях эволюции создал у „простых“ организмов сложнейшие мозаичные гены, нуждавшиеся для своей экспрессии в энерго- и материалоёмких механизмах сплайсинга? Действительно ли прогрессивная эволюция, приводящая к усложнению, может идти от сложного к простому? Если это так, нас могут ожидать удивительные открытия. Например того, что у древнейших организмов уже были (зарезервированы на будущее?) сложнейшие гены, которые находились в молчащем („свёрнутом“) состоянии. Того, что прогрессивная эволюция — это процесс — постепенной реализации (распаковки) ранее образовавшейся (или заложенной?) генетической информации. Может быть, именно в этом ответ на мучительную загадку, почему у амёбы длина генома в 200 раз больше, чем у человека (об этом ниже).

Итак, путь прогрессивной эволюции направлен:

— от простого воспроизведения рибозимов, увеличивающих их количество, к увеличению их длины за счёт дупликаций и дивергенции их генов за счёт субфункционализации.

— от случайного перебора нуклеотидов, к случайному перебору экзонов, кодирующих субсмысловые модули.

Весьма принципиально, что случайно образовавшиеся дупликации подвергаются случайному мутационному процессу, влияющему на исходно одинаковые функции обоих генов. А действие отбора, направленного на поддержание исходной общей функции, приводит к дивергенции функций дуплицированных генов. Это ведёт к тому, что если до дупликации один ген выполнял определённую функцию, то после дупликации и мутационного процесса эту необходимую функцию могут выполнять уже два гена и только совместно, но не порознь. Это приводит к весьма важному и новому для теории эволюции выводу: прогрессивная дивергентная эволюция происходит без изменения условий среды, а в результате постоянно идущих случайных мутационных процессов, главную роль в которых играют спонтанные дупликации генов (и геномов). Отбор, который при этом действует, является ни направляющим, ни дизруптивным [18], но очищающим (purifying) от вредных мутаций (от шума).

Прогрессивная эволюция, сопровождающаяся усложнением, не имеет адаптивного (по отношению к окружающей среде) характера. Это весьма неожиданное и принципиальное положение было сформулировано совсем недавно [19].

Разумеется, такое „прогрессивное“ усложнение должны быть „совместимым с жизнью“, о тех случаях, когда оно было летальным, мы не узнаем никогда. И, разумеется, после такого „усложнения“ направляющий или дизруптивный отбор подгоняет (адаптирует) организмы к конкретным условиям окружающей среды. [16].

На протяжении последних 4 млрд лет условия на Земле всё время менялись, крайне любопытно было бы взглянуть, какими бы мы были, если б прогрессивная эволюция шла в стационарных, не изменяющихся условиях среды.

При рассмотрении экзон-интронной структуры эукариотных генов мы впервые столкнулись с вопросом, а может ли в эволюции существовать то, что не имеет смысла? Для чего организмам, жившим ещё до разделения животных и растительных царств, были нужны такие сложные гены?

А жизнь, как с холодным вниманьем посмотришь вокруг,

Такая пустая и глупая шутка.

Лермонтов

Самая обескураживающая шутка, которую эволюция сыграла над человеком — это количество генетической информации, которое имеет амёба. Ибо одноклеточная амёба имеет количество ДНК, в 200 раз большее, чем у „венца“ эволюции, т. е., у Homo sapiens. У амёбы в ДНК около 600 млрд букв (нуклеотидов), у нас — 3 млрд. Ну зачем ей столько? И что там написано? А написаны там (миллионы раз!) одно или несколько „бессмысленных слов“. И с современной точки зрения они ничего не значат.