Смекни!
smekni.com

Изоморфизм уравнений диссипативных свойств растворов электролитов (стр. 4 из 4)

Результаты оценок электропроводностей, функции от среднемолярного коэффициента активности, степени диссоциации, параметр экранирования и функции распределения для раствора KCl

C mol/l  лит[13, 10] (36) (37)
f
0,0000 149,89 149,8840 149,7958 0,0000 1,0000 1,0000 1,0000
0,0010 145,90 146,0854 146,2624 -0,0164 0,9734 1,0092 0,9939
0,0030 144,92 145,2336 145,6019 -0,0271 0,9668 1,0160 0,9895
0,0050 143,61 144,0036 144,5005 -0,0338 0,9581 1,0207 0,9865
0,0100 140,80 141,3354 142,0616 -0,0450 0,9394 1,0292 0,9809
0,0500 134,41 135,3996 137,0724 -0,0779 0,8967 1,0653 0,9579
0,1000 130,01 131,2067 133,5506 -0,0915 0,8674 1,0924 0,9409
0,5000 117,25 118,4013 123,3921 -0,0968 0,7822 1,2066 0,8727
0,7000 113,60 114,4728 120,2643 -0,0880 0,7579 1,2445 0,8512
1,0000 111,07 111,4574 118,3158 -0,0693 0,7410 1,2922 0,8249
1,5000 107,20 106,6835 114,9154 -0,0253 0,7152 1,3579 0,7900
2,0000 104,12 102,6718 112,0035 0,0311 0,6946 1,4132 0,7617
2,2220 102,70 100,8436 110,5826 0,0584 0,6852 1,4356 0,7505
3,0000 100,70 97,3787 108,5911 0,1519 0,6718 1,5061 0,7164
3,5000 0,1979 1,5466 0,6976
3,9000 0,2187 1,5770 0,6837
5,0000 0,1568 1,6534 0,6502
6,0000 -0,1237 1,7157 0,6240
7,0000 -0,7022 1,7731 0,6009

Таблица 11

Результаты оценок коэффициента диффузии раствора KCl

C mol/l Dтеор(30) Dтеор(35) Dтеор(38) Dтеор(40) Dлит[10]
0,0000 1,7234 1,7223 1,7223 1,7234 1,7220
0,0010 1,6775 1,6941 1,6650 1,6608 1,6969
0,0030 1,6662 1,6757 1,6476 1,6398 1,6805
0,0050 1,6512 1,6641 1,6297 1,6196 1,6710
0,0100 1,6189 1,6449 1,5948 1,5806 1,6563
0,0500 1,5454 1,5881 1,5304 1,5006 1,6105
0,1000 1,4948 1,5648 1,5025 1,4626 1,5932
0,2000 1,5498 1,5880
0,3000 1,5477 1,5880
0,5000 1,3481 1,5556 1,5025 1,4277 1,5984
0,7000 1,3062 1,5708 1,5161 1,4321 1,6122
1,0000 1,2771 1,6030 1,5645 1,4687 1,6347
1,1800 1,6273 1,6502
1,5000 1,2326 1,6788 1,6424 1,5321 1,6788
2,0000 1,1972 1,7759 1,7273 1,6058 1,7280
3,0000 1,1578 1,9840 1,9206 1,7810 1,8248
3,5000 2,0632 1,8662
3,9000 2,0990 1,8973
5,0000 1,9923
6,0000 1,5092
7,0000 0,5129

Таблица 12

Результаты оценок вязкости раствора KCl

C mol/l  теор(29)  теор(41)  теор(41а)  теор(42)  лит[10]  лит[12] эксп
0,0000 0,8669 0,8718 0,8713 1,0536 0,8937 0,9714
0,0010 0,8906 0,9019 0,9041 1,0523 0,9706 0,982
0,0030 0,8966 0,9114 0,9157 1,0513
0,0050 0,9048 0,9214 0,9272 1,0507 0,9698
0,0100 0,9229 0,9416 0,9500 1,0496 0,986
0,0500 0,9667 0,9812 1,0007 1,0459
0,1000 0,9995 0,9994 1,0267 1,0440 0,991
0,2000 1,0425 0,9682
0,3000 1,0422
0,5000 1,1082 0,9994 1,0517 1,0433 1,005
0,6900 1,0454 0,8950 0,9753
0,7000 1,1438 0,9904 1,0485 1,0456
1,0000 1,1699 0,9598 1,0224 1,0499 1,012
1,4300 1,0574 0,9000 0,9882
2,0000 1,2480 0,8693 0,9351 1,0685 1,03
2,2220 1,2652 0,8523 0,9177 1,0730 0,9150 1,0013
3,0000 1,2904 0,7819 0,8431 1,0895 0,9350 1,0157 1,04
3,9000 1,1095 1,0292
5,0000 1,1348
6,0000 1,1584
7,0000 1,1825

Таким образом, плазменное приближение при исследовании водных растворов электролитов и составляющих их частиц, основанное на структурном единстве статистической механики для микро- и макроскопических объектов, открывает определенные перспективы для решения ряда проблем систем зарядов.

Прежде всего, это удовлетворительная аппроксимация проблемы диффузии и вязкости растворов электролитов различной концентрации и при различных температурах.

Выводы:

Показана принципиальная возможность объединения таких диссипативных свойств, как электропроводность, вязкость и диффузия.

Предложена новая теоретическая модель расчетов коэффициентов диффузии растворов электролитов, базирующаяся на применении известного уравнения Нернста – Хартли экспериментальных (или теоретических) данных по электропроводности и применении множителя

, учитывающего колебательный характер равновесия “диссоциация – рекомбинация ионов” и силу сопротивления среды осциллирующими ионами.

Способ не требует введения подгоночных параметров и позволяет оценивать D от нулевых разбавлений до концентрированных растворов электролитов.

Используя уравнение Стокса – Эйнштейна показана возможность приближенного определения вязкости растворов электролитов используя найденные значения диффузии в большой области концентраций электролитов без подгоночных параметров.

Также рассмотрен известный способ теоретической оценки вязкости водных растворов электролитов, основанный на новой интерпретации подвижности.

Список литературы

Балданов М. М., Мохосоев М. В. //Докл. АН СССР. 1985. Т. 284. №6. с. 1384.

Балданов М. М. //Изв. Вузов. Химия и хим. технология. 1986. Т. 29. №8. с. 38.

Балданов М. М., Танганов Б. Б., Мохосоев М. В. Электропроводность водных растворов слабых кислот //Докл. АН СССР. 1988, Т. 299, №4, с. 899-904.

Балданов М. М., Танганов Б. Б., Мохосоев М. В. Электропроводность растворов и кинетическое уравнение Больцмана //Журн. Физ. Химии. 1990, Т. 64, №1, с. 88-94.

Балданов М. М., Танганов Б. Б. Проверка теории электропроводности на метанольных растворах электролитов //Журн. Физ. Химии. 1992, Т. 66, с. 1263-1271.

Балданов М. М., Танганов Б. Б., Мохосоев М. В. Метод расчета электропроводности спиртовых растворов электролитов //Журн. Физ. Химии. 1992, Т. 64, с. 1263-1271.

Балданов М. М., Танганов Б. Б. Применение уравнения электропроводности для оценки констант диссоциации электролитов и количественного определения бинарных электролитов //Региональная конференция “Аналитика Сибири и Дальнего Востока – 93”. Тезисы докладов. – Томск, 1993. – с. 19.

Stokes G. G. //Trans. Camb. phil. Soc., 1845, V. 3, p. 287.

К.Б. Яцимерский, В.К. Яцимерский, “Химическая связь”. Киев: Изд. Вища школа, 1975, с. 70.

Справочник химика. Т. III. М. – Л.: Химия. 1965, с. 672, 719.

Дзюба С.А., Попов В.И., Моралев В.И., Цветков Ю.Д. Определение коэффициентов диффузии парамагнитных частиц на основе концентрационной зависимости формы спектров ЭПР //Журн. физ. химии. 1987, Т. 51, №8, с. 2188-2193.

Краткий справочник физико – химических величин. Изд. 8-е, перераб./Под ред. А. А. Равделя и А. М. Пономаревой. – Л.: Химия, 1983. – 232 с.

Лобо В. М. М. //Электрохимия, 1991, Т.27, с.613.