of the Challenger.
The performance of the putty is another probable cause of the joint seal failure.
The zinc chromate putty is placed on the inside of the joints and also forced between the
gap of the tang and clevis during assembly. It is there to stop combustion of hot gas from
reaching the O-rings. The hot gases can make holes in the putty, thus letting gas go
through to the O-rings which could cause damage (Mahal). Prior to the tenth launch of
the Challenger, the company that had been producing the putty for the SRB joints went
out of business. Putty had to be obtained from a new source and post-testing showed that
it was more susceptible to environmental effects; moisture made it tackier (Lewis 83).
Due to the launch temperature being very significant, the Rogers Commission took this
finding into account as a contributing factor.
The Rogers Commission found that the failure was due to a faulty design
unacceptably sensitive to a number of factors (reusability, putty and O-ring performance in
adverse temperatures). The investigative party concluded that the company producing the
O-rings, Morton Thiokol, and NASA were guilty of allowing an avoidable accident to
occur (Downing). This accident was deemed avoidable through research done on both
companies? engineers, prior memorandums sent between the companies and department
heads, and events that took place on the eve of flight 51-L.
On July 31st, 1985, Roger Boisjoly, Staff Engineer in applied mechanics at Morton
Thiokol, sent a memo to Robert Lund, Thiokol?s Vice President of Engineering, urging
that Thiokol?s unofficial task force originally ?said? to be assigned to the field joint
problem officially be pulled from their regular duties and actually assigned to the problem.
The memo concluded, ?It is my [Roger Boisjoly] honest and real fear that if we do not
take immediate action to dedicate a team to solve the problem with the field joint having
the number one priority, then we stand in jeopardy of losing a flight along with all the
launch pad facilities? (Vaughan 448).
Prior to this task force request?eight years prior, NASA and Morton Thiokol
both new that the solid rocket boosters were poorly designed. In that period of time
nearly every launch had been recorded as having some type of erosion with the infamous
O-rings. When Roger Boisjoly voiced his concern, nearly a year and a half before the
launch of the Challenger, the department heads nonchalantly assured him that it was being
worked on. A message sent in August of 1985 from the project engineer recognized the
problem, stated that long term solutions looked good, and simple short term measures
should be taken to ?reduce flight risks? (Vaughan 449). The long term solutions were
projected to require several years. Shuttles had already been at risk, and for the time
being would remain at risk.
The night before the fatal launch, a number of engineers voiced their concerns.
Roger Boisjoly and others advised that a launch temperature of 53 degrees Fahrenheit was
crucial for proper functioning of the field joints? O-rings (Vaughan 338). Chief executives
and heads argued with sarcasm asking the engineers why they thought 53 was the magic
number? The Rogers Commission later found that head executives of Morton Thiokol
were in agreement with the lower level research engineers until they found out that NASA
was considering other companies to build the rocket boosters. Not wanting to lose their
biggest client, Thiokol heads changed theirs minds a few days before the 28th to act in the
?best interests? of the firm–to go a head with the launch (Vaughan 337). This provided
an even tougher challenge for Boisjoly and company to change anyone?s mind on the
launch eve. He later states, ?This was a meeting where the determination was to launch,
and it was up to us to prove beyond a shadow of a doubt that it was not safe to do so.
This is in total reverse to what the position usually is in a preflight conversation or a flight
readiness review? (Vaughan 338).
The engineers were ignored. No one went to the press or a member of Congress.
No one tried to reach the astronauts and inform them of the risks they were taking if they
launched the following morning. High-level engineers told NASA what it wanted to hear,
and low-level engineers held their breath and went back to work. These were the reasons
the Rogers Commission found NASA and Thiokol guilty of an ?avoidable? accident.
NASA?s rush to launch despite engineering objections is typical of American
corporate behavior. Although NASA is a government agency, not a business, by trying to
make the shuttle commercially practical, NASA subjected its operations to business
considerations almost from the beginning. Furthermore, the agency is essentially a
coordinator of the work of a large number of private corporations, where most of the
engineers and technicians that were at question were employed.
The shuttle explosion is just ?another example of the acceleration degradation of
the status of the engineer in the American corporation,? says Ralph Nadar, a chemical
engineer at Union Carbide (Lindorff 880). The profit motive for the companies seemed to
be overriding engineering concerns at exactly the time when the engineer?s views were
crucially important. What happened at NASA and Morton Thiokol is a useful lesson for
corporations: not only were the engineers overruled by the management, they were so
afraid of retaliation that they didn?t go outside the chain of command. Other than honest
ethical practices, they had a reason to be. Thiokol?s first reaction to the disaster was to
punish Roger Boisjoly and Allan McDonald, Director of Solid Rocket Motors. These two
were the main culprits of presenting the contradicting launch evidence on the night before
the launch and also the engineers who testified exclusively before the Presidential
Commission. For this, Thiokol decided to punish them by reassigning them and reducing
their responsibilities (Lindorff 880).
Intimidation plays a huge role in corporate America. When a ?whistleblower,? a
lone guy making noise (Lindorff 881), raises a complaint, the most simple alternative for
the company is dismissal. The lack of individual protection, especially for engineers, is
causing a decaying hole in the code of ethics. Boisjoly and McDonald knew exactly why
they felt the launch of the Challenger should have been delayed again, but after being shot
down and shut out by upper level management that night, they turned away with their
fingers crossed and accepted their attempt as good enough, fearful of who else to turn to.
By noon the next day, the engineers had second thoughts on letting consequences guide
their ethical decisions.
A quote by Seymour Melman, an industrial engineer at Columbia University, from
Lindorff?s article depicts just how terrible unacted upon ethical decisions can be in
America:
??In the Soviet Union it?s called democratic centralism?you argue and debate
until the leadership reaches a decision, and then you shut up and go along. Here
in the United States it?s just called putting on your management cap. In the end,
they?re the same thing. The only difference is that here [in America], after a
disaster, you learn about it because we have a tradition of independent
institutions, like The New York Times or National Public Radio.?
(880)
On January 28th, 1986, the independent institutions certainly did not fail the
nation. Live national press coverage let even the most rural communities join in and feel
like part of the event. Somehow NASA and Christa McAuliffe had created something so
wonderful that it joined the American people as if there was an invisible flow of holding
hands nationwide. NASA was an impenetrable superpower and it made the people feel
the same.
If you asked me personally where I was in the late morning on that day of January,
I could tell you very explicitly. My entire third grade class at Sandoz Elementary School
had been given the privilege to watch the launch with other classes in the library. We had
been covering the Challenger mission for weeks in class, preparing for the date with
anticipation. Just prior to our lunch and recess period we all sat Indian-style on the floor
waiting for the moment quietly. As I watched the shuttle ascend and disappear, exploding
in the smoke, denial set in. I thought I had missed something, or the station was showing
footage of a previous disaster. Realization of the truth didn?t set in until later when our
teacher had the unsettling task of explaining to the class what actually did happened.
A study conducted in 1993 published in Change magazine by Arthur Levine,
revealed some interesting views of college students of that generation. Twenty-eight
collegiate institutions were visited by Levine and other colleagues, where they met with
eight to ten students per institution. The question posed was, what social and political
events had most influenced their generation? Five common answers were given. The
most frequent answer was the Challenger explosion. It seemed that once one student
mentioned it, other members of the group would begin by shaking their heads in
agreement and then continue conversing about it in an open discussion. Levine states, ?It
was the equivalent of the Kennedy assassination for this generation.? All the students
knew where they had been when they heard the news; most had watched it on television in
school. Some had been scheduled to have the teacher-astronaut Christa McAuliffe teach
them from space. As students talked about their first shared generational tragedy in the
sense that it shattered both their idealism and their feeling of security, Levine remembers
some of their quotes: ?I always thought NASA was perfect.? ?There were smashed
dreams because of it.? ?My hopes were in it. There was an Asian, a Black, and two
women.? Levine concludes by realizing that the relationship between Christa McAuliffe
and this generation felt so personal to them, that for many it was their first brush with
death (10-11).
As NASA looks to the future, finding ways to go higher, faster, and farther, the
tragedy of mission 51-L will never be forgotten. Few of the administration from 1986 still
work for NASA, but despite this, the program as a whole is continually searching to
upgrade safety procedures and equipment. The crew of the ill-fated Challenger have
staked their claim in the history books and due to the extensive media coverage, frozen
images in peoples? minds that might last forever. Whenever dealing with risky technology,
accidents are bound to happen. It?s truly too bad that such a collaborating, heart-felt
event had a tragic end that crushed America?s social invincibility. The past has a quality of
repeating itself, and when NASA?s unlucky day comes up again, it will most likely set the
scale for the most covered space mission in history, again.
Works Cited
?The Crew of the Challenger Shuttle Mission in 1986.? WWW. NASA. 2 Dec. 1999.
Downing, Claudia Glenn. ?The Challenger Disaster: 10 Years Later.? Life. Feb. 1996.
WWW. Pathfinder. 29 Nov. 1999.
Haggerty, James, Anthony E. Hartle, and William Bauman. ?Report of the Presidential
Commission on the Space Shuttle Challenger Accident.? Ed. Woods Hansen.
6 June 1986. WWW. Kennedy Space Center/NASA. 2 Dec. 1999: preface,
chapters 4-5, 9, commission.
Levine, Arthur. ?The Making of a Generation.? Change Sept.-Oct. 1993: 10-11.
Lewis, Richard S. Challenger: The Final Voyage. New York: Columbia UP, 1988.
Lindorff, Dave. ?When All Systems Aren?t Go; Engineers? Duty to Speak Out.? The
Nation 28 June 1996: 881-882.
Mahal, Davinder S. ?The Space Shuttle Challenger Accident, 1986.? 1996. WWW. 1
Dec. 1999.
McConnell, Malcolm. Challenger: A Major Malfunction. Garden City, New York:
Doubleday and Company, Inc., 1987.
Vaughan, Diane. The Challenger Launch Decision: Risky Technology, Culture, and
Deviance at NASA. Chicago: U of Chicago P, 1996.
34c