Смекни!
smekni.com

Колониальная организация и межклеточная коммуникация у микроорганизмов (стр. 5 из 7)

По принципу описанной системы luxI-luxR организованы (с теми или иными модификациями) кворум-зависимые регуляторные системы и у ряда других грамотрицательных бактерий (таблица). В роли диффундируюших химических факторов коммуникации также выступают ацилированные лактоны гомосерина. Одна и та же бактерия может включать несколько плотностно-зависмых систем. Так, в последние годы показано, что рассмотренная выше светящаяся бактерия V. fischeri фактически имеет и вторую плотностно-зависимую систему регуляции биолюминисценции ainI-ainR со своим активатором транскрипции (AinR), связывающим диффузный фактор N-октаноил-L-лактон гомосерина [8].

Аналогично, две кворум-зависимых системы с N-(3-оксибутаноил)-L-лактоном гомосерина и пока не идентифицированным соединением (условно названным AI-2) как диффузными агентами межклеточной коммуникации регулируют свечение у родственной морской бактерии Vibrio harveyi. Однако, наряду с активатором транскрипции (LuxR), у V. harveyi есть также и репрессор (LuxO). Его инактивация достигается сочетанным действием диффузных продуктов обоих систем: N-(3-оксибутаноил)-L-лактон гомосерина связывается белком LuxN, a AI-2 – белками LuxP и LuxQ, которые представляют собой гистидиновые киназы. Они инициируют работу каскада киназ, который и приводит к модификации путём фосфорилирования репрессора LuxO и, таким образом, к активной работе системы биолюминесценции [79].

Бактерии рода Erwinia (E. carotovora, E. chrysanthemii и др.) вызывают мягкую гниль картофеля, хризантем и других растений. Они расщепляют растительные клеточные стенки с помощью пектиназ и целлюлаз. Образование этих ферментов является важным фактором вирулентности Erwinia и представляет собой плотностно-зависимый процесс.[12, 70, 80]. Поэтому при достаточно высокой плотности популяции бактерий синтез ферментов происходит столь интенсивно, что клетки растений разрушаются раньше, чем их иммунная система успевает прореагировать на внедрение патогена. У Erwinia функционирует генная система expI-expR, аналог системы luxI-luxR у V. fischeri. Белок ExpI, частично гомологичный белку LuxI, необходим для синтеза диффузного фактора коммуникации – 3-ОГЛГ (как и у V. fischeri). В силу совпадения факторов коммуникации у Erwinia и у V. fischeri, введение плазмиды, содержащей все гены lux V. fischeri, за вычетом luxI, обусловливает плотностно-зависимую люминесценцию у E. carotovora [80].

У E. carotovora, кроме expI-expR, имеется также аналогичная генная система carI-carR. Система carI-carR ставит синтез антибиотика карбапенема, образуемого E. carotovora, в зависимость от плотности популяции. Активация синтеза антибиотика при высокой плотности популяции посредством системы carI-carR предположительно облегчает E. carotovora устранение бактерий-конкурентов, которые стремятся использовать продукты расщепления компонентов растительных клеток кворум-зависимыми экзоферментами E. carotovora [12, 70].

Помимо 3-ОГЛГ как фактора коммуникации в кворум-зависимых системах, у бактерии E. chrysanthemii обнаружены и другие феромоны [80] (см. таблицу). На примере этой бактерии продемонстрировано, что плотностно-зависимые геннные системы в то же время находятся под контролем других регуляторных систем, в том числе зависимых от цАМФ (и связывающего цАМФ белка CRP [80]; такая зависимость показана и для V. fischeri). Кворум-зависимые системы, таким образом, оценивают не только плотность популяции, но и другие параметры внешней среды через посредничество соответствующих генных регуляторов.

Патогенная для человека и животных бактерия Pseudomonas aeruginosa ("синегнойная палочка"), подобно E. carotovora, синтезирует необходимые для вирулентности факторы – токсин А, экзоферменты (эластазы LasA и LasB, щелочную протеазу), гемолизины и поверхностно-активный рамнолипид.—при наличии бактериального кворума [70, 82]; имеются две генные системы: lasI-lasR и vsmI-vsmR.

Примеры с V. fisheri, E. carotovora и P. aeruginosa демонстрируют, что микробные клетке вступают во взаимодействие с макроорганизмом (растением или животным) только в том случае, если концентрация феромона сигнализирует о достаточной плотности микробной популяции. Это взаимодействие может быть паразитического или/и взаимовыгодного (мутуалистического) типа. Дополнительные примеры представляют

  • Клубеньковые бактериир. Rhizobium. Так, штаммы R. leguminosarum bv. viciae отвечают за формирование азотфиксирующих клубеньков в корневых системах бобовых растений. Соответствующая кворум-зависимая генная система rhiI-rhiR обусловливает интенсивную экспрессию генов rhiABC при высокой плотности популяции. Белковые продукты данных генов участвуют во взаимодействии между бактериальным симбионтом и клетками ризосферы, хотя их функции до конца не выяснены. Интересно, что у родственного вида R. etli функционирует дополнительная генная система raiI-raiR, участвующая в ограничении количества клубеньков на корнях растения-хозяина (мутанты по этой системе формируют вдвое больше клубеньков на корнях фасоли, чем дикий тип) [83].
  • Бактерия Agrobacterium tumefaciens, формирующая корончатые галлы у многих видов бактерий. Галы представляют растительный аналог злокачественной опухоли и образуются в результате переноса онкогенных фрагментов ДНК от бактерии в ядро растительной клетки посредством Ti-плазмид. Некоторые из генов Ti-плазмид обусловливают синтез опинов, которые служат питательным субстратом для A. tumefaciens. Гомологичная luxI-luxR генная система traI-traR стимулирует распространение Ti-плазмид в бактериальной популяции. Поскольку сама система traI-traR локализована на плазмиде, она, как и плазмиды "addiction modules" (см. выше подстраничную сноску 1), соответствует теории "эгоистичной ДНК" социобиолога Р. Докинза . Плазмидная ДНК стремится распространиться в популяции бактерий и, как только имеется достаточный "кворум", побуждает несущие плазмиду клетки конъюгировать с другими бактериальными клетками! [13]. В то же время конъюгативный перенос Ti-плазмид зависит от опинов и, таким образом, возможен лишь в ситуации успешного взаимодействия микробиоты и макроорганизма (растения, формирующего опин-продуцирующую опухоль). В частности, транскрипция traR стимулируется фактором OccR, активируемым октопином (одним из опинов) [70].

Формирование клеток-швермеров, способствующее распространению бактериальной популяции по плотной среде и колонизации различных экологических ниш (в том числе и тела макроорганизма) регулируется у некоторых бактериальных видов системами типа luxI-luxR. Так, генная система swr стимулирует движение клеток-швермеров по плотной среде у Serratia liquefaciens. Предполагается, что продуктом плотностно-зависимых генов swr является внеклеточное поверхностно-активное вещество (аналог рамнолипида у Pseudomonas aeruginosa), облегчающее швермерам передвижение по поверхности питательной среды [84].

Данные о плотностно-зависимых системах типа luxI-luxR и соответствующих феромонах обобщены в таблице. Как уже было отмечено, многие из таких систем важны для регуляции поведения симбиотической (паразитической) микрофлоры, с целью налаживания взаимодействия с макроорганизмом. Более того, коммуникация посредством ацилированных лактонов гомосерина может иметь межвидовой характер. В частности, вырабатываемый Pseudomonas aeruginosa феромон N-(3-оксо)-додеканоил-лактон гомосерина воспринимается эпителиальными клетками человека и индуцирует синтез интерлейкина-8, одного из факторов межклеточной коммуникации, участвующего в имунной защите у человека [8].

Некоторые системы с лактонами гомосерина в роли феромонов способствуют устранению микроорганизмов-конкурентов, синтезируя антибиотики, бактериоцины. Так, генная система phzI-phzR регулирует синтез противогрибковых антибиотиков у Pseudomonas aureofaciens [12]. Актиномицеты рода Streptomyces располагают плотностно-зависимыми системами, регулирующими синтез антибиотиков, развитие воздушного мицелия и спорообразование. Феромонами в этой системе служат (γ-бутиролактоны гомосерина [12]. Однако генетическая система отличается от luxI-luxR типа. γ-Бутиролактоны гомосерина (А-фактор у S. griseus) связываются не с активатором транскрипции, а с репрессором, теряющим активность в результате этого взаимодействия [70]. В роли бактериоцина (ингибитора роста бактерий) выступает один из образуемых бактериями р. Rhizobium лактонов гомосерина, а именно N-(3R-окси-7-цис-тетрадеканоил)-L-лактон гомосерина [83].

Соединения, напоминающие сигнальные агенты плотностно-зависимых систем прокариот, могут вырабатываться эукариотическими клетками как конкурентами или антагонистами прокариотов. "Зная" об информационных функциях подобных химических веществ у прокариот, эукариоты, вероятно, создают своего рода "дезинформационные помехи", "сбивая с толку" бактериальные клетки. Возможно, именно поэтому, например, галогенированные фураноны – близкие аналоги ацилированных лактонов гомосерина – образуемые красной водорослью р. Delysea, представляют собой эффективные антимикробные агенты [85].

Необходимо отметить, что феромоны микроорганизмов и, в частности, ацилированные лактоны гомосерина, могут использоваться в межвидовых взаимодействиях не только в роли антибиотиков/бактериоцинов, но также и в специяической роли сигнальных агентов. Это возможно потому, что различные виды микроорганизмов нередко имеют идентичные или очень сходные по химической природе феромоны [8]. В этой связи интересно, что, например, выделяемые P. аeruginosa внеклеточные вещества усиливают вирулентность факультативной патогенной бактерии Burkholderia cepacium [8].

2. Кворум-зависимые системы с пептидными и белковыми феромонами. "Классической" пептидной кворум-зависимой системой можно считать систему, отвечающую за конъюгативный перенос плазмид уEnterococcus faecalis и родственных бактериальных видов [70, 86]. Подобно рассмотренным системам типа luxI-luxR, эта система стимулирует распространение в микробной популяции признаков, важных для взаимодействия микроорганизма и животного-хозяина, а также для устранения микробных конкурентов. Так, переносимая пептидной кворум-зависмой системой плазмида pAD1 отвечает за синтез гемолизинов, плазмида pCD1 – за образование бактериоцина, а плазмида pCF10 – за устойчивость E. faecalis к тетрациклину [86].