Смекни!
smekni.com

Возможности использования анализатора жидкости Флюорат 02-3м для анализа питьевой и природной воды (стр. 2 из 3)

Нитрит-ион

Определение массовой концентрации нитрит-ионов проводилось параллельно по методикам выполнения измерений, основанным на фотометрическом и флуориметрическом методах с использованием соответствующих приборов.

Значения относительной погрешности измерений массовой концентрации нитрит-ионов в контрольных растворах, выполненных по флуориметрической и фотометрической МВИ, во всем исследованном диапазоне концентраций не превышают 5%.

Значения относительного расхождения результатов измерений нитрит-ионов в реальных пробах, полученных для фотометрической и флуориметрической МВИ не превышают 44%, что можно считать хорошим результатом, поскольку для каждой МВИ в соответствии с ГОСТ 27384-87 установлена норма погрешности определения в этом диапазоне 50%. Полученные результаты можно считать удовлетворительными и соответствующими как требованиям ГОСТ 27384-87, так и установленным характеристикам погрешности соответствующих МВИ.

Флуориметрический метод определения массовой концентрации нитритов с использованием анализатора Флюорат-02-3М характеризуется такой же нижней границей диапазона измерений, что и фотометрический метод (0,005 мг/дм3) и может быть использован для контроля качества питьевой и природной воды наряду с используемым в настоящее время фотометрическим методом.

Определение металлов (алюминий, бор, медь, цинк)

Сравнение МВИ массовых концентраций металлов в воде, проводилось для методик, использующих флуориметрический метод измерения, и методик, по которым в настоящее время проводятся соответствующие определения в Центре исследования и контроля воды.

Определение массовых концентраций цинка, бора и меди выполнялось параллельно по двум МВИ с использованием анализатора Флюорат-02-3М и атомно-эмиссионного спектрометра TRACE-ANALYZER, производства фирмы "Thermo Jarrell Ash Corporation" в лаборатории спектральных методов Центра исследования и контроля воды.

Результаты измерения значений массовой концентрации металлов в контрольных растворах удовлетворяют требованиям ГОСТ 27384-87 и характеристикам погрешности, установленным в соответствующих МВИ. Аналогичные результаты были получены и при измерении массовых концентраций добавок в пробы природной и питьевой воды.

Значения относительного расхождения результатов измерений массовой концентрации названных элементов в природной и питьевой воде не оценивались, поскольку их содержание в исследованных пробах находилось ниже пределов измерения обеих методик.

Флуориметрические методики измерения массовой концентрации бора, меди и цинка с использованием анализатора Флюорат-02-3М можно рекомендовать для осуществления контроля качества природных и питьевых вод.

При определении массовой концентрации алюминия, в сравнительных экспериментах была дополнительно задействована фотометрическая методика с алюминоном, измерения оптической плотности проводились на фотоэлектроколориметре ФЭК-56.

Сравнительные результаты измерений массовой концентрации алюминия в пробах природной и питьевой воды показали, что фотометрическая методика не обладает чувствительностью, необходимой для анализа природных вод в соответствии с современными требованиями. Сопоставление результатов измерений массовой концентрации алюминия в полном объёме удалось провести только для анализатора Флюорат-02-3М и спектрометра с индуктивно-связанной плазмой TRACE-ANALYZER. Расхождение результатов при анализе природных вод лежит в пределах от 2,3% до 38%, а при анализе питьевой воды от 7,4% до 42% соответственно, что можно рассматривать как удовлетворительный результат.

Применение атомно-эмиссионного анализатора позволяет достичь высокой производительности при выполнении измерений, однако в этом случае необходима дорогостоящая аппаратура, эксплуатация которой будет рентабельна только значительном потоке проб. В лабораториях с невысокой загрузкой предпочтительнее использование флуориметрического метода, так как он характеризуется более высокой чувствительностью, чем фотометрический метод измерений. Исходя из этого, есть основания полагать, что флуориметрический метод измерений найдёт применение в практике аналитических лабораторий для выполнения рутинных измерений.

2. Использование анализатора жидкости Флюорат 02-3м в качестве фотометра

Универсальная конструкция анализатора Флюорат-02-3М позволяет выполнять измерения оптической плотности и коэффициентов поглощения растворов. Разумеется, фотометрические характеристики универсального прибора оказываются не столь высокими, как у специализированного фотометра, но погрешности, возникающие при выполнении измерений, не оказывают существенного влияния на конечный результат, так как погрешность МВИ оказывается в десятки раз больше, чем погрешность собственно измерительного прибора.

Опробование фотометрических методик проводилось на примере наиболее часто выполняемых в практике работ водопроводно-канализационных хозяйств определений, таких как, например, цветность, измерения массовых концентраций нитратов, сульфатов, ионов аммония и общего железа. При этом использовались методики выполнения измерений, утвержденные в качестве ГОСТ, а также оригинальные МВИ, разработанные специалистами Центра исследования и контроля воды.

Исследования фотометрических методик позволяют сделать следующие выводы:

возможно использование анализатора Флюорат-02-3М в качестве фотометра, при этом для двух показателей качества воды (сульфаты, железо) сохраняются метрологические характеристики соответствующих МВИ;

для других показателей (цветность, нитраты, ионы аммония) необходимо провести дополнительные исследования, направленные на оптимизацию условий измерения с использованием анализатора Флюорат-02-3М. Главным образом это относится к подбору спектральных характеристик светофильтров, таким образом, чтобы они соответствовали требованиям стандартизованных МВИ.

Метод инструментального определения ХПК

В лаборатории химических методов анализа питьевой воды Центра исследования и контроля воды используется метод инструментального определения ХПК, реализованный на специализированном спектрофотометре DR-2000 в комплекте с реактором ХПК фирмы "HACH". Минерализация пробы производится в реакторе ХПК непосредственно в герметичных фотометрических кюветах - пробирках. Сразу после охлаждения кюветы помещаются в спектрофотометр, где измеряется оптическая плотность исследуемой пробы относительно холостой пробы, прошедшей аналогичный цикл минерализации. Значение бихроматной окисляемости рассчитывают исходя из ослабления полосы поглощения бихромат-иона с максимумом вблизи 450 нм. Этот метод хорошо зарекомендовал себя на практике, обладает высокой производительностью (одновременно анализируются 25 проб) и значительно снижает трудоёмкость по сравнению с классической методикой, основанной на титровании пробы после минерализации.

На анализаторе Флюорат-02-3М, дополненном термоблоком производства фирмы "ЭКРОС", адаптированном для работы в качестве реактора ХПК, оказалось возможным реализовать метод инструментального определения ХПК, что показано при сопоставлении с оборудованием фирмы "HACH". Измерения выполнялись одновременно на двух приборах, с использованием методики ЦВ 1.04.35-98 "А", разработанной в Центре исследования и контроля воды.

Было проведено измерение бихроматной окисляемости (ХПК) в контрольных растворах и реальных пробах питьевой и природной воды как до, так и после введения добавки ГСО.

Результаты измерения значений ХПК в контрольных растворах представлены в таблице 2. Полученные результаты измерений удовлетворяют характеристикам погрешности, установленным в МВИ ЦВ1.04.35-98 "А", что позволяет рекомендовать использование анализаторов Флюорат-02-3М для реализации инструментального метода измерения ХПК.

Таблица 2. Сопоставление значений ХПК, измеренных с использованием анализатора Флюорат-02-3М

Заданная концентрация Сст, мг/дм3 12 26 30 50 70 89
Измеренная концентрация Сизм, мг/дм3 13 29 30 51 71 93
Разность значений Сстизм, мг/дм3 1,0 3,0 0 1,0 1,0 4,0
Допустимая погрешность D , мг/дм3 + 3,2 + 4,6 + 5,0 + 7,0 + 9,0 + 10,9

3. Нефелометрический метод определения мутности

Об определении мутности воды необходимо рассказать несколько подробнее. Практика работы лаборатории химических методов анализа питьевой воды Центра исследования и контроля воды показала, что МВИ мутности, утвержденная в настоящее время в качестве ГОСТ 3351-74, обладает целым рядом существенных недостатков. Прежде всего это связано с невозможностью достичь сопоставимости результатов измерений, выполняемых различными лабораториями. Связано это обстоятельство с тем, что при измерении поглощения света, обусловленного взвешенными микрочастицами, на результат измерения оказывает влияние окраска раствора. Поэтому при фотометрических измерениях необходимо в канале сравнения установить кювету с той же пробой, в которой измеряется мутность, но свободной от взвешенных микрочастиц. Разность двух измерений принимается за результат измерения мутности. Этим и объясняются значительные погрешности результатов при измерении мутности фотометрическим методом.