Атомы углерода в алканах могут различаться по характеру своего соединения с другими углеродными атомами. Атом углерода, связанный только с одним углеродным атомом, называется первичным, с двумя — вторичным, с тремя — третичным и, наконец, с четырьмя — четвертичным.
Здесь первичные углеродные атомы обведены кружком, вторичный — квадратом, третичный — треугольником, четвертичный — пунктирным кружком.
Такое деление имеет большое значение, так как водородные атомы при первичном, вторичном и третичном углеродных атомах обладают различной реакционной способностью.
В ряду радикалов мы также встречаемся с явлением изомерии (см. табл. 2). Причем число изомеров у радикалов значительно больше, чем у соответствующих им алканов. Например, пропан, как известно, изомеров не имеет, а радикал пропил имеет два изомера: н-пропил и изо-пропил:
|
СН3—СН3—СН2— и Н3С—СН—СН3
Это связано с тем, что свободная валентность может находиться при разных углеродных атомах (вторичном и третичном).
1.3. Получение алканов
Для получения алканов используют в основном природные источники. Газообразные алканы получают из природного и попутных нефтяных газов, а твердые алканы — из нефти. Природной смесью твердых высокомолекулярных алканов является горныйвоск (озокерит) — разновидность твердого природного битума.
Многие предельные углеводороды можно получать методом гидрирования углей:
500 °С
nC + 2nН2® СnН2n+ 2
оксиды железа
Так как при этом из твердого угля образуется смесь жидких продуктов, процесс называется сжижением угля.
С этой же целью используют смесь оксида углерода и водорода (синтез-газ) в присутствии катализатора (кобальта или никеля):
200 °С
nCО + (2n + 1)Н2 ® СnН2n + 2 + n Н2О
кат.
Образующиеся алканы находят применение в качестве моторного топлива (синтетический бензин — "синтин").
Для получения алканов часто применяют лабораторные методы - органический синтез.
1. Гидрирование этиленовых и ацетиленовых углеводородов в присутствии катализатора (Pt, Pd, Ni):
Pt Pt
H2C==CH2 + H2 ® H3C—CH3 H—CººC—H + 2H2 ® H3C—CH3
этилен этан ацетилен этан
2. Действие металлического натрия на галогенопроизводные алканов (галогеналкилы) — реакция французского химика А.Вюрца:
Н3С—I + 2Na + I—СН3 ® Н3С—СН3 + 2NaI
йодистый метил
Этот синтез служит для получения алканов из однородных галогеналкилов. Если в реакцию вводят два различных галогеналкила, то образуется не один продукт, а их смесь. Например:
Н3С—I + 2Na + I—С2Н5 ® Н3С—С2Н5 + 2NaI
пропан
Н5С2—I + 2Na + I—С2Н5 ® Н5С2—С2Н5 + 2NaI
бутан
3. Сплавление солей карбоновых кислот со щелочами:
Н3С—СOONa + NaOH ® СН4 + Na2CО3
4. Восстановление галогенопроизводных:
Pt
Н3С—С1 + Н2 ® CH4 + НС1
хлористый метил
1.4. Физические и химические свойства
Физические свойства. Первые четыре члена гомологического ряда метана — газообразные вещества, начиная с пентана — жидкости, а углеводороды с числом углеродных атомов 16 и выше — твердые вещества (при обычной температуре). Температура кипения алканов с разветвленной цепью ниже, чем соединений нормального строения (табл. 3).
Алканы — неполярные соединения и трудно поляризуемые. Они легче воды и в ней практически не растворяются. Не растворяются также в других растворителях с высокой полярностью. Жидкие алканы — хорошие растворители для многих органических веществ.
Метан и этан, а также высшие алканы не имеют запаха, но среди других легколетучих низших углеводородов встречаются соединения, обладающие слабым запахом.
Алканы — горючие вещества. Метан горит бесцветным пламенем.
Таблица 3. Физические свойства алканов
Название | Формула | tпл °С | tкип °С | d204 |
Метан | СН4 | -182,5 | -161,5 | 0,4150(при -164 °С) |
Этан | С2Н6 | -182,8 | -88,6 | 0,5610(при -100 °С) |
Пропан | С3Н8 | -187,7 | -42 | 0,5853(при -44,5 °С) |
Бутан | С4Н10 | -138,3 | -0,5 | 0,6000(при 0°С) |
Пентан | C5H12 | -129,7 | +36,1 | 0,6262 |
Гексан | С6Н14 | -95,3 | 68,7 | 0,6594 |
Гептан | С7H16 | -90,6 | 98,4 | 0,6838 |
Октан | C8H18 | -56,8 | 124,7 | 0,7025 |
Нонан | С9Н20 | -53,7 | 150,8 | 0,7176 |
Декан | C10H22 | -29,6 | 174,0 | 0,7300 |
Пентадекан | C15H32 | +10 | 270,6 | 0,7683 |
Эйкозан | С20Н42 | 36,8 | 342,7 | 0,7780(при 37 °С) |
Пентакозан | C25H52 | 53,7 | 400 | 0,8012 |
Триаконтан | С30Н62 | 66,1 | 457 | 0,8097 |
Химические свойства.
В алканах все атомы связаны между собой прочными (s-связями, а валентности углеродных атомов полностью насыщены водородом. Поэтому алканы не вступают в реакции присоединения. При обычных условиях они проявляют высокую химическую устойчивость. По этой причине алканы в свое время получили название парафинов (от лат. parum affinis — мало деятельный, мало сродства).
Основные химические превращения алканов идут только при сообщении им достаточно высокой энергии (при нагревании или облучении УФ-светом). При этом может произойти или разрыв связи С—Н с последующим замещением атома водорода на другой атом или группу атомов, или же разрыв молекулы по связи С—С. Несмотря на то что энергии этих связей равны соответственно 415-420 (для первичных углеродных атомов) и 350 кДж/моль, разрыв предпочтительнее идет по связи С—Н. Это связано с тем, что связь С—Н более доступна для реагента.
Поскольку алканы — соединения неполярные, то при разрыве связей образуются главным образом не ионы, а радикалы, т.е. этот процесс идет по гомолитическому механизму.
Таким образом, для алканов различают два основных типа химических реакций:
реакции замещения водорода (с разрывом связи С—Н);
реакции расщепления (с разрывом связей С—С и С—Н).
Реакции замещения. В этих реакциях замещение водорода легче происходит при третичном углеродном атоме, труднее — при вторичном и совсем плохо — при первичном.
1. Галогепирование (замещение галогеном) - важнейшая реакция алканов. Она протекает при освещении УФ-светом или в темноте при сильном нагревании, а также в присутствии катализаторов. Сравнительно легко алканы вступают в реакцию замещения с хлором и бромом, очень трудно — с иодом. С фтором реакция протекает со взрывом (поэтому обычно фтор разбавляют азотом или используют растворители). В результате замещения водорода галогеном образуются галогено-производные алканов. Например, хлорирование метана протекает с последовательным замещением в его молекуле всех атомов водорода на хлор:
СН4 + Cl2® СН3С1+ НС1
хлорметан
СН3С1 + Cl2® СН2С12 + НС1
дихлорметан
СН2С12 + Cl2® СНС13+ НС1
трихлорметан
СНС13 + Cl2® СС14 + НС1
тетрахлорметан
Реакция галогенирования имеет цепной свободно-радикальный характер (Н.Н.Семенов). На первой стадии этого процесса под влиянием УФ-облучения (или высокой температуры) происходит распад молекулы хлора на два свободных радикала. Такой процесс называется инициированием:
Сl : Сl ® С1× + С1×
Затем начинается рост цепи. Свободный радикал взаимодействует с молекулой метана:
СН4 + С1×® СН3× + НС1
СН3× + Cl2® СН3Сl + С1× и т.д.
Эта реакция обрывается, если исчезнут свободные радикалы. Поэтому обрыв цепи часто связан с взаимодействием свободных радикалов друг с другом:
СН3× + СН3×® Н3С:СН3
этан
С1× + С1×® С1:С1
хлор
СН3× + С1×® СН3:С1
хлорметан
2. Нитрование (замещение нитрогруппой NO2). Впервые эту реакцию открыл русский ученый М.И.Коновалов в 1888 г. (с тех пор она названа его именем). Алканы взаимодействуют с разбавленной азотнойкислотой при нагревании, образуя нитропроизводные алканов:
Н3С—СН2—СН3 + HNO3® Н3С—СН—СН3 + H2O
|
NO2
2-нитропропан
В промышленности реакцию нитрования проводят, нагревая алканы с парами азотной кислоты при 250—500 °С и давлении (парофазное нитрование). Реакция нитрования, как и галогенирования, идет по цепному радикальному механизму. Нитрующим агентом является радикалоподобный оксид азота NO2, который, взаимодействуя с алканом, образует свободный радикал — алкил R×:
R—H + NO2×® R× + HNO2
Взаимодействие этих радикалов приводит к образованию нитросоединений:
R× + NO2×® R—NO2
3. Сульфирование. Дымящая серная кислота (содержащая растворенный в ней SO3) с высшими алканами дает сульфокислоты. Например:
С17Н36 + H2SO4® С17Н35SО3Н + Н2O
гептадекан гептадецил-
сульфокислота
В результате таких реакций атом водорода в молекуле алкана замещается на сульфогруппу - SO3Н.
Соли сульфокислот (алкилсульфонаты) с C12-18 широко используются в качестве моющих средств. Эти соли можно получить и реакцией сульфохлорирования — действием на алканы смесью диоксида серы и хлора:
С10Н22 + SO2 + Cl2® C10H21SO2Cl + HC1