Смекни!
smekni.com

Ионометрия. Поиск неисправностей (стр. 3 из 3)

Влияние на градуировку оказывает также температура. Если температура, при которой градуировался электрод, не совпадает с температурой анализируемого раствора, то возникает систематическая погрешность. Для уменьшения погрешности надо постоянно следить за тем, чтобы температура проб и стандартов была одинакова. Если следить за температурой в ходе эксперимента не представляется возможным, существует способ корректировки результатов измерений.

В некоторых случаях (при вялой динамике изменения градуировочных характеристик) смена метода определения позволяет уменьшить погрешность анализа. Например, если изменение градуировочных характеристик выражается только в изменении абсолютного значения потенциала при постоянстве наклона градуировочной функции, то применение метода добавок дает возможность снизить погрешность определения по сравнению с методом градуировочного графика. Применение титриметрии позволяет проводить определения даже в том случае, если изменяется наклон градуировочной функции.

Колебания ионной силы в пробах и в стандартах;

Как известно, на результат ионометрических измерений оказывает влияние ионная сила раствора, как основной фактор, определяющий активность ионов в растворе. Так как в анализируемых объектах возможно колебание ионной силы от пробы к пробе, то в результатах анализа появляется систематическая погрешность. Уменьшить погрешность можно 4-мя способами:

сменой метода анализа, так как по степени уменьшения влияния ионной силы, методы анализа можно расположить в следующем порядке: метод градуировочного графика > метод добавок > титриметрия;

стабилизацией ионной силы в пробах и стандартах раствором инертной соли. Т.е. в пробу и стандарты добавляются равные количества соли, катион и анион которой не являются потенциалопределяющими и не мешают определению. Добавка должна быть такой, чтобы ионную силу раствора определяла в основном вводимая соль. Таким образом, возможные колебания ионной силы в пробах сводятся к минимуму;

разбавлением анализируемой пробы, так как оно приводит к уменьшению вклада ионной силы в активность ионов в растворе;

математическим расчетом ионной силы и коэффициента активности. Расчет в ионометрической практике применяется крайне редко и годится скорее всего для проведения научных исследований, чем для проведения массовых анализов.

Методические ошибки в процедуре проведения анализа;

Нередко источником больших погрешностей являются методические ошибки в процедуре проведения анализа. Под методическими ошибками подразумеваются ошибки от не оптимального планирования условий эксперимента, математической обработки результатов и т.д.. Детальное рассмотрение вопросов оптимизации условий проведения эксперимента показывает, что рекомендации по минимизации погрешности анализа зависят от того, каким методом проводятся измерения.

Нарушение правил хранения растворов;

Для того, чтобы избежать потерь растворенных в воде веществ при хранении, необходимо соблюдать ряд правил.

Во-первых, растворы следует хранить в посуде из химически стойкого стекла. Растворы с малым содержанием растворенных веществ необходимо хранить в посуде из боросиликатного стекла (пирекс) или из полиэтилена. Во-вторых, растворы с концентрацией растворенных веществ ниже pX=5 долговременному хранению не подлежат.

В анализе природных и сточных вод считается, что определение следует проводить не позднее 12 часов после отбора пробы. В противном случае в отобранную пробу вводят специальные химические вещества для стабилизации состава раствора.

Если в результате хранения раствор утратил свой первоначальный цвет, прозрачность или на дне сосуда появился осадок, то такие растворы для анализа лучше не использовать.

Загрязнение анализируемой пробы электродами;

При анализе малых концентраций систематическая погрешность результатов может быть вызвана загрязнениями, вносимыми электродами, как ионоселективным, так и электродом сравнения. Для снижения уровня загрязнений можно предпринять следующие шаги:

сократить время проведения единичного определения, применяя, например, метод градуировочного графика;

увеличить объем пробы для уменьшения скорости накопления загрязнения;

вводить в пробу неводные растворители, снижающие растворимость мембраны ИСЭ;

снабдить электрод сравнения жидкостного заполнения (хлорсеребряный, каломельный) дополнительным электролитическим мостом с раствором соли, не мешающей проведению определения.

Загрязнение пробы, как правило, сопровождается дрейфом потенциала.

Память электрода.

Памятью электрода, или гистерезисом, называется появление систематической погрешности, величина которой зависит от концентрации потенциалопределяющего иона в предыдущем анализируемом растворе. Это явление встречается на практике довольно редко и обычно связано с измерениями в пробах с большим диапазоном концентраций (3-4 порядка). Характерным косвенным признаком гистерезиса является дрейф потенциала во времени.

Для уменьшения погрешности измерений электрод отмывают, погружая в дистиллированную воду или другой раствор, не содержащий потенциалопределяющего иона.

4. СЛУЧАЙНАЯ ПОГРЕШНОСТЬ АНАЛИЗА

Большая случайная погрешность может быть вызвана следующими перечисленными ниже причинами:

хаотическим изменением потенциала;

использованием ИСЭ с малым наклоном градуировочной функции;

Закономерным следствием измерений с ИСЭ, имеющим малый наклон градуировочной функции, является большая случайная погрешность результатов анализа.

Особенно ярко случайная погрешность проявляется при использовании микропроцессорных иономеров. Обычно в этих приборах предусмотрена возможность автоматического запоминания результатов градуировки. Величина наклона градуировки при этом специально не контролируется, что приводит к неожиданному для оператора появлению большого разброса в показаниях прибора из-за слишком малой величины наклона градуировочной функции. Малый наклон градуировки свидетельствует о проведении измерений с неисправными электродами.

не контролируемыми изменениями условий измерения;

Несмотря на то, что погрешность от изменения условий анализа обычно является по своему характеру систематической, она может принимать характер случайной. Это обстоятельство вызвано тем, что условия анализа в некоторых случаях не поддаются контролю. Описание наиболее распространенных случаев приведено ниже.

Изменение рН в незабуференных системах

Во время проведения измерений в пробе, не содержащей веществ, поддерживающих заданную кислотность (буферов), возможно не контролируемое изменение рН. Источником таких изменений могут служить как растворение мембраны электродов, так и углекислота воздуха. Очевидно, что мера воздействия на рН пробы будет зависеть от времени нахождения электродов в растворе, тщательности их отмывки после предыдущего анализа, энергичности перемешивания раствора.

Измерения в пробах с малым содержанием анализируемого вещества.

Причина случайной погрешности кроется, как правило, в недостаточно тщательной отмывке электродов после предыдущего анализа.

методическими ошибками в процедуре проведения анализа.

Оптимизация процедуры анализа

1. Метод градуировочного графика

Большое влияние на величину погрешности определения в методе градуировочного графика оказывает стабильность измеряемого потенциала. Так как далеко не все ИСЭ обладают хорошей стабильностью потенциала, то важно знать, в какой момент проведения измерений можно считать величину потенциала установившейся, т.е. годной к дальнейшим расчетам. Несмотря на то, что некоторые исследователи считают потенциал установившимся по прошествии определенного времени от начала измерения, предпочтительнее отбирать для расчетов величины потенциала по достижении определенного уровня его дрейфа. Использование рекомендуемого способа позволяет получать линейные градуировки, более точные результаты при колебании солевого фона в пробах. Верхней границей дрейфа потенциала, при которой еще возможно определением методом градуировочного графика с удовлетворительной точностью, можно рекомендовать величину в 0.5-1 мВ/мин.

При проведении анализа нельзя считать достоверными результаты, полученные в результате измерения за границами градуировки, так как градуировочные функции ИСЭ часто бывают нелинейными, и экстраполяция ведет к большим погрешностям. Если в результате измерений в пробе содержание определяемого компонента находится вне границ градуировки, следует провести градуировку заново таким образом, чтобы предполагаемый результат анализа находился между крайними значениями стандартов.

2. Метод стандартных добавок

Для уменьшения погрешности анализа в методе добавок следует пользоваться теми же правилами, что и для метода градуировочного графика.

Кроме того, существенно снижает погрешность определения оптимизация режима введения добавок в пробу. Чрезмерно большие или малые добавки увеличивают погрешность анализа. Оптимальная величина добавок должна быть такой, чтобы она вызывала отклик потенциала в 10-20 мВ для однозарядного и 5-10 мВ для двухзарядного ионов.

На стадии обработки результатов анализа необходимо уделять внимание линейному виду графиков в координатах Грана. Если какой-либо график оказывается нелинейным, то результат этого определения нельзя считать достоверным.

3. Титриметрия

Поскольку в окрестности точки эквивалентности время на достижение стабильного значения потенциала увеличивается, следует обратить особое внимание на титрование в этой области, дожидаясь постоянства в показаниях измеряемого потенциала.

Для получения точных результатов анализа необходимо так организовать анализ, чтобы на графике титрования частота экспериментальных точек в окрестности точки эквивалентности была наибольшей.

Надежность результатов можно качественно оценивать по форме кривой титрования. Например, если в результате титрования получается соединение, молекулу которого составляют один ион титранта и один ион анализируемого соединения, то график титрования должен быть центральносимметричен относительно точки эквивалентности при благополучном ходе титрования. Асимметрия графика свидетельствует о снижении надежности проводимого определения.