Чем выше плотность и кристалличность полиэтилена, тем выше механическая прочность и теплостойкость материала.. Теплостойкость полиэтилена невысока, поэтому длительно его можно применять при температурах до 60-100°С. Морозостойкость полиэтилена достигает — 70°С и ниже. Полиэтилен химически стоек, и при комнатной температуре нерастворим ни в одном из известных растворителей. При нагревании устойчив к воде, к ацетону, к спирту.
Недостатком полиэтилена является его подверженность старению. Для защиты от старения в полиэтилен вводят стабилизаторы и ингибиторы (2-3% сажи замедляют процессы старения в 30 раз).
Под действием радиоактивного облучения полиэтилен твердеет, приобретает большую прочность и теплостойкость.
Полиэтилен применяют для изготовления труб, литых и прессованных несиловых деталей (вентили, контейнеры и др.), полиэтиленовых пленок для изоляции проводов и кабелей, чехлов, остекления парников, облицовки водоемов; кроме того, полиэтилен служит покрытием на металлах для защиты от коррозии, влаги, электрического тока и др.
Полипропилен (— СН2 - СНСН3 - ),, - является производной этилена. Применяя металлоорганические катализаторы, получают полипропилен, содержащий значительное количество стереорегулярной структуры. Это жесткий нетоксичный материал с высокими физико-механическими свойствами. По сравнению с полиэтиленом этот пластик более теплостоек: сохраняет форму до температуры 150°С. Полипропиленовые пленки прочны и более газонепроницаемы, чем полиэтиленовые, а волокна эластичны, прочны и химически стойки. Нестабилизированный полипропилен подвержен быстрому старению. Недостатком пропилена является его невысокая морозостойкость (— 10 - 20°С).
Полипропилен применяют для изготовления труб, конструкционных деталей автомобилей, мотоциклов, холодильников, корпусов насосов, различных емкостей и др.Пленки используют в тех же целях, что и полиэтиленовые.
Полистирол ( - СН2 - СНС6Н5 - )„— твердый, жесткий, прозрачный, аморфный полимер. По диэлектрическим характеристикам близок к полиэтилену, удобен для механической обработки, хорошо окрашивается.
Будучи неполярным, полистирол растворяется во многих неполярных растворителях (бензол), в то же время Он химически стоек к кислотам и щелочам; нерастворим в спиртах, бензине, маслах, воде. Полистирол наиболее стоек к радиоактивному облучению по сравнению с другими термопластами (присутствие в макромолекулах фенильного радикала С6Н5).
Недостатками полистирола являются его невысокая теплостойкость, склонность к старению, образование трещин.
Ударопрочный полистирол представляет собой блоксополимер стирола с синтетическим каучуком. Такой материал имеет в 3 — 5 раз более высокую прочность на удар и в 10 раз более высокое относительное удлинение по сравнению с обычным полистиролом (рис. 199). Высокопрочные АБС-пластики (акрилонитрилбутадиенстирольные) отличаются повышенной химической стойкостью и ударной прочностью, имеют Ơв = 3,5 - 6,5 кгс/мм2, Ев = 100 - 250 кгс/мм2 и теплостойкость по Вику 100—125°С). Однако диэлектрические свойства таких сополимеров ниже по сравнению с чистым полистиролом. Из полистирола изготовляют детали для радиотехники, телевидения и приборов, детали машин (корпуса, ручки и др.), сосуды для воды и химикатов, пленки стирофлекс для электроизоляции, а АБС-пластики применяются для деталей автомобилей, телевизоров, лодок, труб и т. д.
Физико-механические свойства неполярных термопластовТаблица 1
Материал | Плотность, г/см3 | Рабочая температура, °С | Предел прочности, кгс/мм2 | ||||
максимальная | минимальная | при рас-. тяжении | при сжатии | при статическом изгибе | |||
Полиэтилен:ПЭВДПЭНД Полипропилен Полистирол Фторопласт-4 | 0,918-0,93 0,949-0,96 0,9-0,92 1,05-1,12,15-2,35 | 105-108 120-125 15080250 | -40,-70 и ниже-70 и ниже -15-20-269 | 0,84-1,75 1,95-4,52,53.5-4 1,4-3,5 | 1,25-2,1 2-3,66102 | 1.2-1,7 2 — 3,8 7-85-10 1,1-1,4 | |
Материал | Относительное удлинение при разрыве, | Ударная вязкость а, кгс •• см/см- | Диэлектрическая проницаемость | Удельное объемное сопротивление Ом ■ см | Тангенс угла диэлектрических потерь при 106 Гц, 10"4 | Электрическая прочность,кВ/мм | |
Полиэтилен:ПЭВДПЭНДПолипропилен Полистирол Фторопласт-4 | 150-600100-900100-4000,4-3,5250-350 | Не ломается33 – 80 10-22 100 | 2,2-2,3 2,1-2,4 2 2 2,5-2,7 1,9-2,2 | 10171017101610151018 | 2-32-52-53-42-2,5 | 45-60 45-60 28-40 20-25 35-40 |
Фторопласты (отечественное название пластика фторопласт-4, фторлон-4) являются термически и химически стойкими материалами. Основным представителем фторсодержащих полимеров является политетрафторэтилен ( — CF2 — CF2 — ),,. Это насыщенный полимер с макромолекулами в виде зигзагообразных спиралей. До температуры 250°С скорость кристаллизации мала и не влияет на его механические свойства, поэтому длительно эксплуатировать фторопласт-4 можно до температуры 250сС. Разрушение материала происходит при температуре выше 415°С. Аморфная фаза находится в высокоэластическом состоянии, это придает фторо-пласту-4 (фторлону-4) относительную мягкость. Температура стеклования — 120°С, но даже при весьма низких температурах (до — 269°С) пластик не охрупчивается. Высокая термостойкость фторопласта-4 обусловлена высокой энергией связи С — F. Кроме того, вследствие небольшого размера атомы фтора образуют плотную оболочку вокруг цепи С—С и защищают последнюю от химических реагентов. Фторопласт-4 стоек к действию растворителей, кислот, щелочей, окислителей. Практически фторлон-4 разрушается только под действием расплавленных щелочных металлов (калий, натрий) и элементарного фтора, кроме того, вода пластик не смачивает. Политетрафторэтилен малоустойчив к облучению. Это наиболее высококачественный диэлектрик, и его диэлектрические свойства мало изменяются в широком диапазоне температур. Фторопласт-4 обладает очень низким коэффициентом трения (/= 0,04), который не зависит от температуры (до 327°С когда начинает плавиться кристаллическая фаза). Недостатками фто-ропласта-4 являются хладотекучесть (результат рекристаллизации), выделение токсичного фтора при высокой температуре и трудность его переработки (вследствие отсутствия пластичности).
Фторопласт-4 применяют для изготовления труб для химикатов, деталей (вентили, краны, насосы, мембраны), уплотнительных прокладок, манжет, сильфонов, электрорадиотехнических деталей, антифрикционных покрытий на металлах (подшипники, втулки).
Разновидностью фторопласта является фторопласт-4Д, отличающийся формой и размером частиц, меньшей молекулярной массой. Это облегчает переработку материала в изделия. Физико-механические свойства одинаковы с фторопластом-4.
Волокно и пленку фторлон изготовляют из фторопласта-42. Фторлоновая ткань не горит, химически стойка, применяется для емкостей, рукавов, спецодежды, диафрагм и т. д.
Физико-механические свойства неполярных термопластичных пластмасс (термопластов) приведены в табл. 1.
Полярные термопластичные пластмассы. К полярным пластикам относятся фторопласт-3, органическое стекло, поливинилхлорид,. полиамиды, полиуретаны, полиэтилентерефталат, поликарбонат, полиарилаты, пентапласт, полиформальдегид.
Фторопласт-3 (фторлон-3) — полимер трифторхлорэтилена, имеет формулу ( — CF2 — CFC1 — )„ и является кристаллическим полимером.
Введение атома хлора нарушает симметрию звеньев макромолекул, материал становится полярным. Диэлектрические свойства снижаются, но появляется пластичность и облегчается переработка материала в изделия. Фторопласт-3, медленно охлажденный после формования, имеет кристалличность около 80 — 85%, а закаленный — 30 — 40%. Интервал рабочих температур от — 105 до + 70°С. При температуре 315°С начинается термическое разрушение. Хладотекучесть полимера проявляется слабее, чем у фторопласта-4. По химической стойкости уступает политетрафторэтилену, но все же обладает высокой стойкостью к действию кислот, окислителей, растворов щелочей и органических растворителей.
Модифицированный политрифторхлорэтилен, выпускаемый под названием фторопласт-ЗМ, обладает большей теплостойкостью (рабочая -температура 150—170°С), он более эластичен и легче формуется, чем фторо-пласт-3.
Фторопласт-3 используют как низкочастотный диэлектрик, кроме того, из него изготовляют трубы, шланги, клапаны, насосы, защитные покрытия металлов и др.
Органическое стекло — это прозрачный аморфный термопласт на основе сложных эфиров акриловой и метакриловой кислот. Чаще всего применяется полиметилметакрилат, иногда пластифицированный дибутилфталатом. Материал более чем в 2 раза легче минеральных стекол (р = 4=1,18 г/см3), отличается высокой атмосферостойкостыо, оптически прозрачен (светопрозрачность 92%), пропускает 75% ультрафиолетовых лучей (силикатные - 0,5%). При температуре 80°С органическое стекло начинает размягчаться; при температуре 105 —150°С появляется пластичность, что позволяет формовать из него различные детали. Механические свойства органического стекла зависят от температуры. Критерием, определяющим пригодность органических стекол для эксплуатации, является не только их прочность, но и появление на поверхности и внутри материала мелких трещин, так называемого «серебра». Этот дефект снижает прозрачность и прочность стекла. Причиной появления серебра являются внутренние напряжения, возникающие в связи с низкой теплопроводностью и высоким температурным коэффициентом линейного расширения материала.
Органическое стекло стойко к действию разбавленных кислот и щелочей, углеводородных топлив и смазок, растворяется в эфирах и кетонах, в органических кислотах, ароматических и хлорированных углеводородах. Старение органического стекла в естественных условиях протекает медленно.