5. скрытые микробиальные карбонаты: образования с микритовой, сгустковой, пелоидной или спаритовой микроструктурами и отсутствием отчётливо выраженных макроструктур.
По мнению автора, только агглютинированные строматолиты образуются преимущественно за счёт захватывания частиц осадка. Формирование скелетных строматолитов, дендролитов и тромболитов происходит главным образом за счёт биоминерализации. А процесс поверхностной минерализации доминирует при образовании туфа-строматолитов, субаэральных строматолитов и травертин.
Макарихин и Медведев предложили создание единой классификации цианобактериальных и водорослевых построек по формальным признакам с использованием ботанической номенклатуры в соответствии с Международным кодексом (ICBN (1980).
В качестве категории наивысшего ранга предлагается отдел — литофита, состоящий из двух подотделов: строматолитофитина (прикреплённые к субстрату постройки) и онколитофитина(неприкреплённые к субстрату постройки).
Подотдел строматолитофитина делится на пять классов: стириолиты, родолиты,строматолиты, микростроматиты, тромболиты.
[править]Класс строматолиты
В этот класс объединены постройки первично-карбонатного состава.
По морфологии построек класс делится на четыре порядка: пластовые, желваковые,столбчатые и брусковые.
К традиционно выделяемым первым трём добавлены брусковые — вытянутость по длинной оси сопоставима с высотой постройки.
Столбчатые строматолиты делятся на два подпорядка — ветвящиеся (включающий 2 семейства: пассивно — и активно-ветвящиеся) и неветвящиеся (с единственным семейством колонковых).
В качестве примера пассивноветвящихся можно привести род Kussiella Kryl., 1963. Активноветвящиеся делятся на три подсемейства: якутиды (род Jakutophyton Schap., 1965); гимносолениды (род Gymnosolen Steinm., 1911); тунгуссиды (род Tungussia Semikh., 1962). Примером неветвящихся является род Colonnella (Komar, 1964).
[править]Класс стириолиты
Постройки первичнокремнистого состава, термин предложен М. Уолтером, изучавшим оригинальные существенно кремнистые постройки, морфологически сходные со строматолитами и приуроченные к зоне действия горячих источников (Walter, 1976; 1996). Им описаны первичнокремнистые водорослево-бактериальные постройки в термальных источниках и гейзерах Йеллоустоуновского национального парка штата Вайоминг, США (Walter et al., 1972; Walter, 1977). Примером первичнокремнистых фитогенных построек являются находки в гейзеритах Камчатки (Макарихин, 1985). В качестве ископаемых аналогов стириолитов можно указать фитогенные постройки из раннепротерозойской свиты Ганфлинт в провинции Онтарио, Канада, которые морфологически и микроструктурно весьма схожи со стириолитами Йеллоустоуна (Walter, 1972). Примером может служить Gruneria biwabikia Cloud et Semikh., 1969, описанная из железорудных свит Бивабик и Ганфлинт Канадского щита и кремнистых пород вулканогенной свиты Маунт Джоп Западной Австралии (Cloud & Semikhatov, 1969), а также разнообразные кремнистые фитолиты свиты Ганфлинт, содержащие многочисленные остатки микроорганизмов (Hofmann, 1969; Awramik & Semikhatov, 1979). В Китае из протерозойской свиты Умишань (район г. Пекина) описаны кремнистые микроколонковые и пластовые постройки, содержащие нитчатые и сферические микрофоссилии (Cao Ruiji, 1991). Кремнистые фитолиты обнаружены и на Балтийском щите, в частности, в верхах вашозерской свиты Карелии (Медведев, 1991; Куршева и
Библиография
- В. В. Макарихин, П. В. Медведев «Строматолиты. Методы исследования.»
- Е. Л. Сумина «Морфология строматолитов результат морфогенеза многоклеточных прокариот.»
История образования атмосферы
Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом,аммиаком, водяным паром). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:
- утечка легких газов (водорода и гелия) в межпланетное пространство;
- химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.
Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим — азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).
[править]Азот
Образование большого количества N2 обусловлено окислением аммиачно-водородной атмосферы молекулярным О2, который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также N2 выделяется в атмосферу в результате денитрификации нитратов и др. азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.
Азот N2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз сбобовыми растениями, т. н. сидератами.
[править]Кислород
Состав атмосферы начал радикально меняться с появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений — аммиака, углеводородов, закисной формы железа, содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьезные и резкие изменения многих процессов, протекающих в атмосфере,литосфере и биосфере, это событие получило название Кислородная катастрофа.
В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.
[править]Углекислый газ
Содержание в атмосфере СО2 зависит от вулканической деятельности и химических процессов в земных оболочках, но более всего — от интенсивности биосинтеза и разложения органики вбиосфере Земли. Практически вся текущая биомасса планеты (около 2,4×1012 тонн[1]) образуется за счет углекислоты, азота и водяного пара, содержащихся в атмосферном воздухе. Захороненная в океане, в болотах и в лесах органика превращается в уголь, нефть и природный газ. (см. Геохимический цикл углерода).
[править]Благородные газы
Источник инертных газов — аргона, гелия и криптона — вулканические извержения и распад радиоактивных элементов. Земля в целом и атмосфера в частности обеднены инертными газами по сравнению с космосом. Считается, что причина этого заключена в непрерывной утечке газов в межпланетное пространство.
[править]Загрязнение атмосферы
В последнее время на эволюцию атмосферы стал оказывать влияние человек. Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО2в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 20—30 лет количество СО2 в атмосфере удвоится и может привести к глобальным изменениям климата.
Сжигание топлива — основной источник и загрязняющих газов (СО, NO, SO2). Диоксид серы окисляется кислородом воздуха до SO3 в верхних слоях атмосферы, который в свою очередь взаимодействует с парами воды и аммиака, а образующиеся при этом серная кислота (Н2SO4) исульфат аммония ((NH4)2SO4) возвращаются на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH3CH2)4)).
Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу — одна из возможных причин изменений климата планеты.
Литература
1. В. В. Парин, Ф. П. Космолинский, Б. А. Душков «Космическая биология и медицина» (издание 2-е, переработанное и дополненное), М.: «Просвещение», 1975, 223 стр.
2. Н. В. Гусакова «Химия окружающей среды», Ростов-на-Дону: Феникс, 2004, 192 с ISBN 5-222-05386-5
3. Соколов В. А.. Геохимия природных газов, М., 1971;
4. МакИвен М., Филлипс Л.. Химия атмосферы, М., 1978;
5. Уорк K., Уорнер С., Загрязнение воздуха. Источники и контроль, пер. с англ., М.. 1980;